Кодирование как процесс выражения информации
В цифровом виде
Любому дискретному сообщению или знаку сообщения можно приписать какой-либо порядковый номер. Измерение аналоговой величины, выражающееся в сравнении ее с образцовыми мерами, также приводит к числовому представлению информации. Передача или хранение сообщений при этом сводится к передаче или хранению чисел. Числа можно выразить в какой-либо системе счисления. Таким образом, будет получен один из кодов, основанный на данной системе счисления. Сравним системы счисления и построенные на их основе коды с позиций применения в системах передачи, хранения и преобразования информации. Общепризнанным в настоящее время является позиционный принцип образования системы счисления. Значение каждого символа (цифры) зависит от его положения — позиции в ряду символов, представляющих число. Единица каждого следующего разряда больше единицы предыдущего разряда в т раз, где т — основание системы счисления. Полное число получаем, суммируя значения по разрядам:
где i — номер разряда данного числа; l — количество разрядов; Чем больше основание системы счисления, тем меньшее число разрядов требуется для представления данного числа, а следовательно, и меньшее время для его передачи. Однако с ростом основания существенно повышаются требования к линии связи и аппаратуре создания и распознавания элементарных сигналов, соответствующих различным символам. Логические элементы вычислительных устройств в этом случае должны иметь большее число устойчивых состояний.
Учитывая оба обстоятельства, целесообразно выбрать систему, обеспечивающую минимум произведения количества различных символов т на количество разрядов l для выражения любого числа. Этот минимум найден при воспроизведении определенного достаточно большого числа Q ( Арифметические и логические действия также наиболее просто осуществляются в двоичной системе. В таблицы сложения, вычитания и умножения входит всего по четыре равенства:
Наиболее распространенная при кодировании и декодировании логическая операция — сложение по модулю. В двоичной системе она также наиболее проста и определяется равенствами:
Алгоритм перевода из двоичной в привычную для человека десятичную систему несложен. Пересчет начинается со старшего разряда. Если в следующем разделе стоит 0, то цифра предыдущего (высшего) разряда удваивается. Если же в следующем разряде единица, то после удвоения предыдущего разряда результат увеличивается на единицу. Итак, для передачи и проведения логических и арифметических операций наиболее целесообразен двоичный код. Однако он неудобен при вводе и выводе информации, так как трудно оперировать с непривычными двоичными числами. Кроме того, запись таких чисел на бумаге оказывается слишком громоздкой. Поэтому, помимо двоичной, получили распространение системы, которые, с одной стороны, легко сводятся как к двоичной, так и к десятичной системе, а с другой стороны, дают более компактную запись. К таким системам относятся восьмеричная, шестнадцатеричная и двоично-десятичная. В восьмеричной системе для записи всех возможных чисел используется восемь цифр от 0 до 7 включительно. Перевод чисел из восьмеричной системы в двоичную крайне прост и сводится к замене каждой восьмеричной цифры равным ей трехразрядным числом. Например, для восьмеричного числа 754 получаем:
Поскольку в восьмеричной системе числа выражаются короче, чем в двоичной, она широко используется как вспомогательная система при программировании. Чтобы сохранить преимущества двоичной системы и удобство десятичной системы, используют двоично-десятичные коды. В таком коде каждую цифру десятичного числа записывают в виде четырехразрядного двоичного числа (тетрады). С помощью четырех разрядов можно образовать 16 различных комбинаций, из которых любые 10 могут составить двоично-десятичный код. Наиболее целесообразным является код 8-4-2-1 (табл. 7.1). Этот код относится к числу взвешенных кодов. Цифры в названии кода означают вес единиц в соответствующих двоичных разрядах. Двоично-десятичный код обычно используется как промежуточный при введении в вычислительную машину данных, представленных в десятичном коде.
Таблица 7.1
Таблица 7.2
В табл. 7.1 представлены два других двоично-десятичных кода с весами 5-1-2-1 и 2-4-2-1, которые широко используются при поразрядном уравновешивании в цифровых измерительных приборах. Среди кодов, отходящих от систем счисления, большое практическое значение имеют такие, у которых при переходе от одного числа к другому изменение происходит только в одном разряде. Наибольшее распространение получил код Грея, часто называемый циклическим или рефлекснд-двоичным. Код Грея используется в технике аналого-цифрового преобразования, где он позволяет свести к единице младшего разряда ошибку неоднозначности при считывании. Комбинации кода Грея, соответствующие десятичным числам от 0 до 15, приведены в табл. 7.2. Правила перевода числа из кода Грея в обычный двоичный сводятся к следующему: первая единица со стороны старших разрядов остается без изменения, последующие цифры (0 и 1) остаются без изменения, если число единиц, им предшествующих, четно, инвертируются, если число единиц нечетно.
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|