Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Определение модуля упругости и коэффициента динамической вязкости тела рыб

 

Для того чтобы воспользоваться всеми теоретически выведенными уравнениями, необходимо знать величину мгновенного модуля упругости Е0, запаздывающего модуля упругости E 1 и коэффициента динамической вязкости η. Величину мгновенного модуля упругости E 0 можно определить исходя из экспериментальных данных. На рис. 9 представлены кривые кинетики деформации тела скумбрии, когда напряжение между наконечником и телом рыбы равно σ =0,13•105 Н/м2.

Рис. 9. График кинетики деформации тела скумбрии.

Мгновенный модуль упругости определяется следующим об разом. По графику определяют величину мгновенной деформации. Мгновенный модуль упругости скумбрии, график кинетики деформаций которой изображен на рис. 9, равен:

 Н/м2                                (5)

Мгновенный модуль упругости для скумбрии, ставриды, сардинеллы, сельди, берикса колебался в пределах от 1,5•105 до 6•105 Н/м2.

Численное значение коэффициента динамической вязкости определяли, основываясь на следующем. Из рис. 9 видно, что вначале деформация тела рыбы происходит только за счет мгновенного модуля упругости Е0 (участок AB), а затем за счет совместного действия запаздывающего модуля упругости и вязкости (участок ВС). Постепенно криволинейная зависимость практически переходит в прямолинейную (участок CD). Если полагать, что на участке CD деформация происходит только за счет вязкости, то можно из графика определить коэффициент динамической вязкости:

                             (6)

Определив на участке CD тангенс угла наклона, можно найти коэффициент динамической вязкости.

ЖЕСТКОСТЬ РЫБЫ

 

Надежность работы рыбообрабатывающихмашин в значительной степени зависит от структурно-механических свойств рыбы. Тело рыбы после засыпания проходит три стадии изменении: до посмертного окоченения, посмертное окоченение и автолиз. Каждой стадии посмертных изменений соответствуют свои показатели структурно-механических свойств мышечной ткани рыбы. Эти изменения характерны как для свежей рыбы, так и для замороженной, а затем размороженной. С изменением структурно-механических свойств рыбы изменяются силы взаимодействия между рыбой и рабочими органами машин, поскольку изменяется площадь контакта, обусловливающая силы трения.

До настоящего времени структурно-механические характеристики в основном оцениваются органолептическим методом. Рыбу сдавливают пальцами и оценивают ее консистенцию. Не достатком такого метода оценки структурно-механических характеристик мышечной ткани является его субъективность. К. тому же нет количественных показателей, оценивающих консистенцию тела рыбы.

Был предложен критерий оценки структурно-механических свойств тела рыбы, названный жесткостью. При органолептическом исследовании консистенции мышечной ткани человек сжимает тело рыбы, совершая работу, по величине которой и судят о консистенции тела рыбы. Для получения количественного критерия совершаемой работы необходимо, чтобы сжатие рыбы совершала машина и при этом весь процесс сжатия рыбы можно было записать на ленту. Исследование жесткости тела рыбы проводилось на тех же приборах и с теми же приспособлениями, что и в случае определения допустимого удельного давления.

Тензометрическаяголовка автоматического пресса IS-5000 позволяла фиксировать усилия от 0,01 до 50000 Н. Скорость перемещения траверсы пресса принималась равной 10 мм/мин, а скорость перемещения ленты — 20 мм/мин. Как было указа но выше, рыба является упруговязким телом. Известно, что при большой скорости деформации упруговязкие тела ведут себя как упругие. Для проявления как упругих, так и вязких свойств рыбы была выбрана скорость деформации тела рыбы, равная. 10 мм/мин.

Исследования по определению жесткости тела рыбы проводили в следующей методической последовательности. Рыбу укладывали в приспособление для сжатия с заранее выбран ной площадью пластин. Выбирая площадь пластин, исходили из формы тела рыбы, при этом необходимо было обеспечить максимальный первоначальный контакт между пластинами и мышечной тканью тела рыбы. Чаще всего применяли пластины размерами 20х30 мм, 20х50 мм и 30х80 мм.

Запись самописца автоматического пресса в координатах усилие — деформация для трех различных видов рыб представ лена на рис. 10. По оси ординат указано усилие, действующее на тело рыбы, в ньютонах, а по: оси абсцисс – деформация тела рыбы в миллиметрах. На участке БВ кривой сжатия рыбы, по-видимому, не обеспечивается полный контакт между пластинами и телом рыбы, поэтому целесообразно работу, затраченную на сжатие тела рыбы, определять, начиная с точки В. Работу сжатия для всех исследованных видов рыб определяли при 5-миллим-етровой деформации (участок BE). За штрихованная на рис. 10 площадь и представляет собой работу, затраченную на сжатие рыбы.

Рис. 10. Запись самописца при сжатии тела рыбы:

1 — ставрида; 2 — скумбрия; 3 — сардинелла.

 

Если определять работу сжатия для различных рыб при разной деформации, то вели чины работы будут не соизмеримы.

Под жесткостью тела рыбы понимается отношение работы по сжатию тела рыбы при 5-миллиметровой деформации к площади сжимающих пластин:

                                                   (7)

где С — жесткость тела рыбы, Н/м; А — работа по сжатию тела рыбы, Н м; F — площадь сжимающих пластин, м2.

Этот критерий оценки структурно-механических свойств рыбы назван жесткостью в связи с тем, что его размерность сов падает с размерностью жесткости, общепринятой в технике.

Из рис. 10 видно, что чем меньше сопротивляемость сжатию тела рыбы, тем меньше угол наклона кривой к оси абсцисс, а следовательно, меньше и работа сжатия. Так как из трех видов рыб (ставриды, скумбрии, сардинеллы) наибольшая работа затрачивается на деформацию тела ставриды, то, следовательно, и жесткость тела ставриды будет наибольшей. Для некоторых видов рыб, например кильки, определить экспериментально работу сжатия при 5-миллиметровой деформации практически невозможно, потому что вся толщина тела рыбы не превышает 5 мм. В этом случае для получения соизмеримых значений жесткости можно пересчитать работу при 5-милиметровой, на работу при 5-миллиметровой деформации. На рис. 11 показана работа при деформации λ1 и λ.

Если предположить, что площадь фигуры ABC можно заменить треугольником, то:

                              (8)

Треугольники ABC и AB1C1 подобны и, следовательно:

                                            (9)

                       (10)

тогда

                          (11)

Поскольку работа сжатия рыбы описывается площадью фигур S1 и S, то

                                        (12)

где A –работа сжатия рыбы при 5-миллиметровой деформации; λ – 5-миллиметровая деформация; А1 – работа при деформации, меньшей 5-миллиметровой; λ1 –деформация, при которой определяется работа A 1

Таким образом, представляется возможным сделать пересчет работы сжатия при любой деформации тела рыбы, меньшей 5-миллиметровой, на 5-миллиметровую деформацию.

Таблица 2

Рыба Жесткость тела рыбы, Н/м2 Среднее квадратичн. отклонение, Н/м2 Коэффициент вариации, %
Килька Мойва Салака Сардина Сардинелла Скумбрия Ставрида 224 172 52 79 72 78 96 35 39,8 8,3 12,8 12 10 19 16 23 16 16,3 16 13 20

Эксперименты по определению жесткости тела рыбы проводили на рядовой рыбе, выловленной и замороженной на промысле, а затем размороженной перед проведением опытов. Температура тела рыбы была 8—15°С. В табл. 2 приведены данные о средней величине жесткости некоторых видов рыб (для каждого вида рыб было проведено 20—30 экспериментов).

Зная средние значения жесткости тела рыбы и среднее квадратичное отклонение, можно определить зону доверительных интервалов:

C = C ср ± t(P)σ                        (13)

Из приведенных данных о жесткости тела различных видов рыб, для которых работу определяли при 5-миллиметровой деформации без пересчета, наибольшей жесткостью обладает тело ставриды. Большая жесткость тела кильки и мойвы, обусловлена деформированием не только мышечной ткани, но и хребтовой кости, а следовательно, возрастанием сопротивления сжатии) и работы сжатия.

Предложенный критерий жесткости является объективным показателем структурно-механических свойств рыбы. Известно, что невозможно создать рыборазделочную машину, которая работала бы на сырье любого качества. В настоящее время всякое отклонение от нормы в работе рыбообрабатывающего оборудования объясняется, как правило, несовершенством конструкции машины. Контроль качества поступающего на обработку сырья не ведется и не может вестись, поскольку нет количественного критерия для оценки структурно-механических свойств рыбы. Для установления такого контроля за сырьем необходимо разработать экспресс-приборы, при помощи которых можно осуществлять такой контроль, и установить их непосредственно в цехах и на судах.

Установление границ пригодности сырья для переработки посредством критерия жесткости повысит ответственность добытчиков рыбы за своевременную ее переработку. Сортность рыбы также можно установить с помощью критерия жесткости.

По-видимому, конструкторы рыбообрабатывающего оборудования также смогут гарантировать надежную его работу на сырье, качество которого находится в определенных пределах, установленных при помощи критерия жесткости.

После замораживания, хранения и размораживания жесткость и модуль упругости рыбы уменьшались примерно на 10%. Если полагать, что рыбы подобны не только биологически, но и по структурно-механическим свойствам, то на основании экспериментальных данных, полученных при исследовании леща и судака, можно утверждать, что в результате замораживания и последующего размораживания жесткость рыбы и модуль упругости уменьшаются на 10%.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...