Современные научные исследования требуют обязательных расчётов уровня статистической значимости результатов.
⇐ ПредыдущаяСтр 2 из 2 Обычно в прикладной статистике используют 3 уровня значимости. Уровни значимости 1. 1-й уровень значимости: р ≤ 0,05. Это 5%-ный уровень значимости. До 5% составляет вероятность того, что мы ошибочно сделали вывод о том, что различия достоверны, в то время как они недостоверны на самом деле. Можно сказать и по-другому: мы лишь на 95% уверены в том, что различия действительно достоверны. В данном случае можно написать и так: P>0,95. Общий смысл критерия останется тем же. 2. 2-й уровень значимости: р ≤ 0,01. Это 1%-ный уровень значимости. Вероятность ошибочного вывода о том, что различия достоверны, составляет не более 1%. Можно сказать и по-другому: мы на 99% уверены в том, что различия действительно достоверны. В данном случае можно написать и так: P>0,99. Смысл останется тем же. 3. 3-й уровень значимости: р ≤ 0,001. Это 0,1%-ный уровень значимости. Всего 0,1% составляет вероятность того, что мы сделали ошибочный вывод о том, что различия достоверны. Это — самый надёжный вариант вывода о достоверности различий. Можно сказать и по-другому: мы на 99,9% уверены в том, что различия действительно достоверны. В данном случае можно написать и так: P>0,999. Смысл опять-таки останется тем же. Уровень значимости – это вероятность ошибочного отклонения (отвержения) гипотезы, в то время как она на самом деле верна. Речь идёт об отклонении нулевой гипотезы Но. Уровень значимости – это допустимая ошибка в нашем утверждении, в нашем выводе. 33. t-критерий Стьюдента — общее название для класса методов статистической проверки гипотез (статистических критериев), основанных на распределении Стьюдента. Наиболее частые случаи применения t-критерия связаны с проверкой равенства средних значений в двух выборках.
t -статистика строится обычно по следующему общему принципу: в числителе случайная величина с нулевым математическим ожиданием (при выполнении нулевой гипотезы), а в знаменателе — выборочное стандартное отклонение этой случайной величины, получаемое как квадратный корень из несмещенной оценки дисперсии. Для сравнения средних величин t-критерий Стьюдента рассчитывается по следующей формуле: где М1 - средняя арифметическая первой сравниваемой совокупности (группы), М2 - средняя арифметическая второй сравниваемой совокупности (группы), m1 - средняя ошибка первой средней арифметической, m2 - средняя ошибка второй средней арифметической. Критерий Фишера применяется для проверки равенства дисперсий двух выборок. Его относят к критериям рассеяния. При проверке гипотезы положения (гипотезы о равенстве средних значений в двух выборках) с использованием критерия Стьюдента имеет смысл предварительно проверить гипотезу о равенстве дисперсий. Если она верна, то для сравнения средних можно воспользоваться более мощным критерием. В регрессионном анализе критерий Фишера позволяет оценивать значимость линейных регрессионных моделей. В частности, он используется в шаговой регрессии для проверки целесообразности включения или исключения независимых переменных (признаков) в регрессионную модель. В дисперсионном анализе критерий Фишера позволяет оценивать значимость факторов и их взаимодействия. Критерий Фишера основан на дополнительных предположениях о независимости и нормальности выборок данных. Перед его применением рекомендуется выполнить проверку нормальности. Заданы две выборки . Обозначим через и дисперсии выборок и , и — выборочные оценки дисперсий и : ; , где — выборочные средние выборок и . Критерий хи-квадрат — любая статистическая проверка гипотезы, в которой выборочное распределение критерия имеет распределение хи-квадрат при условии верности нулевой гипотезы. Считается, что критерий хи-квадрат — это критерий, который асимптотически верен, то есть, выборочное распределение можно сделать как угодно близким к распределению хи-квадрат путём увеличения размера выборки.
Критерий применяют для проверки гипотезы о том, что случайная величина подчинена закону распределения , по выборке , . По выборке строят функцию распределения случайной величины . Для этого область изменения значений случайной величины разбивают на интервалы , , и определяют частоту попадания значений случайной величины в каждый интервал , а также теоретическую вероятность . Затем вычисляют значение случайной величины , которая распределена по закону с степенями свободы. При помощи таблиц находят границу критической области при уровне значимости . Если , то принимается решение о справедливости основной гипотезы, в противном случае принимается решение о справедливости альтернативы. 35.стр 187
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|