Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Двойное лучепреломление. Обыкновенный и необыкновенные лучи. Эллипсоид скоростей.




Двойное преломление света  
 

 

В 1669 г. датский ученый Эразм Бартолин опубликовал работу, в которой сообщил об открытии нового физического явления – двойного преломления света. Рассматривая преломление света в кристалле исландского шпата (), Бартолин обнаружил, что луч внутри кристалла расщепляется на два луча (рис. 11.7). Если кристалл поворачивать относительно направления первоначального луча, то поворачиваются оба луча, прошедшие через кристалл. Один из лучей вел себя согласно известному закону преломления света, а второй совершенно необычно. Поэтому Бартолин первый луч назвал обыкновенным, а второй необыкновенным.   Рис. 11.7 Кроме того, Бартолин обнаружил, что луч света, падая в определенном направлении в кристалле исландского шпата, не раздваивается. Объяснение этому явлению дал современник Бартолина - голландский ученый Христиан Гюйгенс. Он показал, что необычное поведение луча света, проходящего через исландский шпат, связано с анизотропией кристалла. Направление, вдоль которого падающий луч не раздваивается, Гюйгенс назвал оптической осью, и кристаллы, имеющие одну оптическую ось, – одноосными кристаллами (исландский шпат, турмалин). Оптические свойства одноосного кристалла одинаковы вдоль всех направлений, образующих один и тот же угол с оптической осью. Любая плоскость, проходящая через оптическую ось, называется главным сечением кристалла. Существуют кристаллы, у которых имеются две оптические оси. Такие кристаллы называют двухосными (гипс, слюда). В своей книге «Трактат о свете», изданной в Лейдене в 1690 г., Гюйгенс подробно объяснил явление двойного преломления света. Благодаря своим исследованиям Гюйгенс подошел к открытию явления поляризации света, однако решающего шага он сделать не смог, поскольку световые волны в его теории предполагались продольными. Рассмотрим подробнее явление двойного лучепреломления. Оно заключается в том, что луч внутри кристалла расщепляется на два луча. Один из них подчиняется известному закону преломления Снеллиуса:, этот луч ообыкновенный, а другой не подчиняется – необыкновенный луч е. Выглядит это так, как показано на рис. 11.8, а.
 
а б

Рис. 11.8

Исследования показали, что обыкновенный и необыкновенный лучи являются полностью поляризованными во взаимно перпендикулярных направлениях.

Плоскость колебаний обыкновенного луча перпендикулярна главному сечению, а необыкновенного луча – совпадает с главным сечением. На выходе из кристалла оба луча распространяются в одинаковом направлении и различаются лишь направлением поляризации (рис. 11.8, б).

Явление двойного лучепреломления используется для получения поляризованного света.

В некоторых кристаллах один из лучей поглощается сильнее другого (дихроизм). Очень сильным дихроизмом в видимом свете обладает кристалл турмалина (прозрачное кристаллическое вещество зеленоватой окраски). В нем обыкновенный луч практически полностью поглощается на длине 1 мм, а необыкновенный луч выходит из кристалла. В кристалле сульфата йодистого хинина один из лучей поглощается на длине 0,1 мм. Это явление используется для создания поляроидов. На выходе поляроида получается один поляризованный луч.

Часто в качестве поляризатора используется так называемая призма Николя. Это призма из исландского шпата, разрезанная по диагонали и склеенная канадским бальзамом (рис. 11.9).

 

Рис. 11.9

Показатель преломления канадского бальзама лежит между значениями показателей и для обыкновенного и необыкновенного лучей в исландском шпате (). За счет этого обыкновенный луч претерпевает на прослойке бальзама полное внутреннее отражение и отклоняется в сторону. Необыкновенный луч свободно проходит через эту прослойку и выходит из призмы.

Двойное лучепреломление объясняется анизотропией кристаллов. В таких кристаллах диэлектрическая проницаемость ε зависит от направления. В одноосных кристаллах диэлектрическая проницаемость в направлении оптической оси и в направлениях перпендикулярных к ней имеет разные значения.

Поскольку, а в диэлектриках μ = 1, то. Следовательно, из анизотропии ε вытекает, что электромагнитные волны разных направлений колебаний вектора имеют разный показатель преломления, и следовательно разную скорость распространения. Скорость распространения обыкновенного луча, а необыкновенного, причем необыкновенный луч распространяется перпендикулярно оптической оси кристалла. В соответствии с этим одноосные кристаллы характеризуются показателем преломления обыкновенного луча и показателем преломления необыкновенного луча. В зависимости от того, какая из скоростей или больше, различают положительные и отрицательные одноосные кристаллы. При условии, когда – кристалл положительный, – отрицательный.

Большой интерес представляет рассмотрение особенностей прохождения света через некоторые кристаллы, называемые двояко - преломляющими. Узкий пучок света, проходя через плоскопараллельную пластину такого кристалла, например исландского шпата СаСО3, раздваивается и расходится в пространстве тем больше, чем длиннее его путь в кристалле (рис. 7.7). Если вращать кристалл вокруг падающего луча, то один из лучей остаётся неподвижным (обыкновенный луч), а другой поворачивается вокруг первого (необыкновенный луч), хотя угол падения при этом сохраняется; названия «обыкновенный» и «необыкновенный» приложимы к лучам, пока они распространяются в кристалле. На выходе лучи оказываются линейно-поляризованными во взаимно перпендикулярных плоскостях, что легко проверить каким-либо анализатором.

Если надлежащим образом сошлифовать часть кристалла, то можно найти в нем такое направление (прямая, соединяющая тупые углы кристалла), вдоль которого раздвоение нормально падающего луча отсутствует,— это так называемая оптическая ось кристалла. Пространственное раздвоение отсутствует и в направлении, перпендикулярном этой оси. Однако там существует иной эффект, о чем будет сказано ниже.

Через точку падения луча на кристалл всегда можно провести оптическую ось; плоскость, содержащая эту ось и падающий луч, называется главной плоскостью (главным сечением) для данного луча.

Рис. 7.7

Рис 7.8

Опыт показывает, что раздвоение луча в кристалле всегда происходит в главной плоскости. Так как при вращении кристалла вокруг падающего луча главная плоскость поворачивается в пространстве, то одновременно поворачивается и необыкновенный луч. Рассмотрим некоторые наиболее простые случаи распространения света в кристалле.

а) Если луч а параллелен оптической оси (рис. 7.8), то положение главной плоскости не определено. В частности, плоскость чертежа является главной плоскостью, но такой же является, например, и перпендикулярная ей плоскость. Условия распространения лучей с любой поляризацией одинаковы, й они не раздваиваются.

б) Если луч б идет перпендикулярно оптической оси (см. рис. 7.8), то электрический вектор, лежащий в главной плоскости, параллелен оси. Электрический вектор, перпендикулярный оси, лежит при этом в плоскости, нормальной к главной, так что условия распространения для этих составляющих электрического поля световой волны неодинаковы: лучи не раздваиваются, но имеют различную скорость распространения.

в) Если луч в идет под произвольным углом к оптической оси, то условия распространения указанных выше составляющих также неодинаковы: лучи распространяются по различным направлениям и с различными скоростями (см. рис. 7Г8).

Однако легко видеть, что луч, имеющий электрический вектор, перпендикулярный оптической оси, во всех этих случаях находится в одинаковых условиях, так что законы его распространения не должны зависеть от направления распространения; это и есть обыкновенный луч, подчиняющийся обычным законам преломления .

Второй же, необыкновенный луч во всех трех случаях находится в разных условиях (оптические свойства кристалла неизотропны), а потому и условия его распространения могут усложняться .

Явление двойного преломления было изучено Гюйгенсом. Он пришел к выводу, что показатель преломления обыкновенного луча по всем направлениям одинаков (n0=const), а необыкновенного (ne) различен. При этом в направлении оптической оси условия распространения обоих лучей одинаковы, й показатели преломления их совпадают. Наибольшее различие показателей преломления получается в направлении, нормальном к оптической оси. Если в этом направлении скорость необыкновенного луча больше, чем обыкновенного (νe 0), то кристалл условно называют отрицательным. В противном случае кристалл считается положительным (νe 0). Кристаллы турмалина и исландского шпата отрицательны, кварца положительны.

В промежуточных направлениях различие в скоростях лучей изменяется непрерывно. ’ Если вообразить световое возмущение, возникающее внутри кристалла, то, по Гюйгенсу, волновые фронты в сечении, параллельном оптической оси, имеют вид, показанный на рисунке 7.9, и обладают вращательной симметрией (вокруг оптической оси). Таким образом, в положительном кристалле волновой фронт обыкновенной волны (сфера) содержит внутри себя вписанный фронт необыкновенной волны (эллипсоид вращения). У отрицательного кристалла, наоборот, фронт необыкновенной волны — эллипсоид — описан вокруг сферы. В обоих случаях поверхности соприкасаются на оптической оси. Очевидно (так как показатель преломления n пропорционален ), что и электрическая проницаемость в кристалле по разным направлениям различна. Для одноосного кристалла существуют три взаимно перпендикулярных направления (х, у, r), для которых справедливы соотношения:

причем направление х является направлением, оптической оси.

Таким образом, векторы электрической напряженности и электрического смещения уже не совпадают друг с другом.

В системе координат (х, у,r) справедливо уравнение:

представляющее эллипсоид вращения (эллипсоид Френеля). В более общем случае, когда эллипсоид оказывается трехосным, а в кристалле существуют два направления оптических осей. Мы не будем изучать такие двухосные кристаллы.

Решение уравнений Максвелла для случая кристалла показывает, что' направление нормали к волновому фронту не всегда совпадает с направлением распространения светового потока (луча). Пользуясь построением Гюйгенса (оно является, в сущности, следствием теории Максвелла), мы увидим, к каким осложнениям это приводит.

Рис. 7.10

Волновые фронты, показанные на рисунке 7.9, получились при возбуждении электромагнитного возмущения в начале координат, лежащем внутри кристалла. Заменим этот несколько искусственный случай более реальным. Пусть на плоскую поверхность кристалла толщиной h падает нормально ограниченная плоская волна. Если кристалл отшлифован так, что его оптическая ось перпендикулярна поверхности, то волновые фронты обыкновенной и необыкновенной волн (рис. 7.10, а) распространяются вдоль оси с одной скоростью и одновременно достигают противоположной грани кристалла (мы считаем ее параллельной верхней грани). При этом никакого раздвоения лучей не происходит, и они покидают кристалл в одной и той же фазе.

Если шлифовка такова, что ось параллельна верхней грани (рис. 7.10, б), то скорости распространения обыкновенной и необыкновенной волн различны, но направления их совпадают. Из кристалла выходят лучи, распространяющиеся в одном направлении, но имеющие разность фаз:

где t0 и te время прохождения обоими лучами толщи кристалл ла, Т — период волны.

Это выражение можно представить в несколько ином виде:

(7.6)

Глаз не различает разности фаз. Так как энергия суммы взаимно перпендикулярных колебаний не зависит от разности начальных фаз (см. «Механику», § 1.9), а колебания векторов и взаимно перпендикулярны, то никакой интерференционной картины на экране не получается. Но специальными методами фазовый сдвиг обнаружить удается (см. § 7.5).

Наконец, если оптическая ось наклонна к грани (рис. 7.10, в), то плоские волновые фронты (огибающие элементарных сферических и эллипсоидальных фронтов), параллельные грани пластины, придут к нижней грани со сдвигом фаз (во времени). При этом обыкновенные лучи распространяются без преломления. Необыкновенные же лучи — прямые, соединяющие точки А (точки пересечения геометрических главных осей эллипсов) с точками В (точки касания волновых фронтов с нижней гранью),— оказываются теперь не перпендикулярными фронту необыкновенной волны: возникает преломление необыкновенных лучей й необыкновенный пучок смещается в кристалле относительно обыкновенного. На нижней грани необыкновенные лучи еще раз преломляются и выходят из кристалла перпендикулярно нижней грани. Пространственное разделение обыкновенного и необыкновенного пучков, возникшее в кристалле, сохраняется и за его пределами. Кроме того, в плоскостях, параллельных грани, оба пучка во внешнем пространстве имеют и фазовый сдвиг во времени.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...