Интерференция поляризованного света. Анализ поляризованного света.
Интерференция поляризованного света
|
|
|
Явления интерференции поляризованных лучей исследовались в классических опытах Френеля и Арго (1816 г.), доказавших поперечность световых колебаний. Суть их в зависимости результата интерференции от угла между плоскостями световых колебаний: полосы наиболее контрастны при параллельных плоскостях и исчезают, если волны поляризованы ортогонально. Трудность получения интерференции поляризованных волн состоит в том, что при наложении двух когерентных лучей, поляризованных во взаимно перпендикулярных направлениях, никакой интерференционной картины с максимумами и минимумами интенсивности получиться не может. Интерференция возникает только в том случае, если колебания во взаимодействующих лучах совершаются вдоль одного и того же направления. Колебания в двух лучах, первоначально поляризованных во взаимно перпендикулярных направлениях, можно свести в одну плоскость, пропустив эти лучи через поляризующую кристаллическую пластинку.
Рассмотрим схему получения интерференции поляризованных лучей (рис. 11.13).
Рис. 11.13
Прошедшее через поляризатор Р излучение точечного источника S попадает на полуволновую кристаллическую пластинку Q, которая позволяет изменять угол между плоскостями поляризации интерферирующих лучей: ее поворот на угол α поворачивает вектор на 2α. Если наблюдать интерференционные полосы через анализатор А, то при его повороте на π/2 картина, наблюдаемая на экране Э, инвертируется: из-за дополнительной разности фаз π темные полосы становятся светлыми и наоборот. Анализатор здесь необходим также для того, чтобы свести колебания двух различно поляризованных лучей в одну плоскость.
при прохождении поляризованного света через кристаллическую пластинку разность хода между двумя компонентами поляризации зависит от толщины пластинки, среднего угла преломления и разности показателей и. Очевидно, что возникающая при этом разность фаз
различна для разных длин волн, и тем самым интерференционная картина оказывается окрашенной. Для плоскопараллельных пластинок наблюдаются полосы равного наклона, а для тонких клиновидных пластинок - полосы равной толщины.
Приведенная формула позволяет для любой фазовой пластинки рассчитать интенсивность на выходе при скрещенных поляризаторе и анализаторе:
|
Пусть на кристаллическую пластинку, вырезанную параллельно оптической оси, нормально падает плоскополяризованный свет (рис. 283). Внутри пластинки он разбивается на обыкновенный (о) и необыкновенный (е) лучи, которые в кристалле пространственно не разделены (но движутся с разными скоростями), а на выходе из кристалла складываются.
Так как в обыкновенном и необыкновенном лучах колебания светового вектора совершаются во взаимно перпендикулярных направлениях, то на выходе из пластинки в результате сложения этих колебаний возникают световые волны, вектор
(а следовательно, и
) в которых меняется со временем так, что его конец описывает эллипс, ориентированный произвольно относительно координатных осей. Уравнение этого эллипса (см. (145.2)):
(194.1)
где Ео и Ее — соответственно составляющие напряженности электрического поля волны в обыкновенном и необыкновенном лучах,
— разность фаз колебаний. Таким образом, в результате прохождения через кристаллическую пластинку плоскополяризованный свет превращается в эллиптически поляризованный.

Рис. 283
Между обыкновенным и необыкновенным лучами в пластинке возникает оптическая разность хода

или разность фаз

где d — толщина пластинки,
— длина волны в вакууме.
Если
,
, то уравнение (194.1) примет вид

т. е. эллипс ориентирован относительно главных осей кристалла. При Ео = Ее (если световой вектор в падающем на пластинку плоскополяризованном свете составляет угол
= 45° с направлением оптической оси пластинки)

т. е. на выходе из пластинки свет оказывается циркулярно поляризованным.
Вырезанная параллельно оптической оси пластинка, для которой оптическая разность хода

называется пластинкой в четверть волны (пластинкой
/4). Знак плюс соответствует отрицательным кристаллам, минус — положительным. Плоскополяризованный свет, пройдя пластинку
/4, на выходе превращается в эллиптически поляризованный (в частном случае циркулярно поляризованный). Конечный результат, как уже рассматривали, определяется разностью фаз
и углом
.
Пластинка, для которой

называется пластинкой в полволны и т. д.
В циркулярно поляризованном свете разность фаз
между любыми двумя взаимно перпендикулярными колебаниями равна
/2. Если на пути такого света поставить пластинку
/4, то она внесет дополнительную разность фаз
/2. Результирующая разность фаз станет равной 0 или
. Следовательно (см. (194.1)), циркулярно поляризованный свет, пройдя пластинку
/4, становится плоскополяризованным. Если теперь на пути луча поставить поляризатор, то можно добиться полного его гашения. Если же падающий свет естественный, то он при прохождении пластинки
/4 таковым и останется (ни при каком положении пластинки и поляризатора погашения луча не достичь).
Таким образом, если при вращении поляризатора при любом положении пластинки интенсивность не меняется, то падающий свет естественный. Если интенсивность меняется и можно достичь полного гашения луча, то падающий свет циркулярно поляризованный, если полного гашения не достичь, то падающий свет представляет смесь естественного и циркулярно поляризованного.
Если на пути эллиптически поляризованного света поместить пластинку
/4, оптическая ось которой ориентирована параллельно одной из осей эллипса, то она внесет дополнительную разность фаз ±
/2. Результирующая разность фаз станет равной нулю или
. Следовательно, эллиптически поляризованный свет, пройдя пластинку
/4, повернутую определенным образом, превращается в плоскополяризованный и может быть погашен поворотом поляризатора. Этим методом можно отличить эллиптически поляризованный свет от частично поляризованного или циркулярно поляризованный свет от естественного.
Воспользуйтесь поиском по сайту: