Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Использование радионуклидов в медицине.




Среди многообразных методов диагностики (распознавания) и терапии (лечения) болезней человека сегодня достаточно широко используются источники ионизирующего излучения (ИИИ), в том числе медицинские радионуклидные препараты (МРП) и изделия (МРИ. В лечебно-профилактических учреждениях (ЛПУ) МРП используются в основном для диагностических целей, которые проводятся в лабораториях радиоизотопной диагностики, а терапевтические процедуры с использованием МРИ – в радиологических отделениях (кабинетах) лучевой терапии.

К МРП относятся радиоактивные фармацевтические препараты (РФП), используемые при проведении радионуклидных диагностических исследований (РНДИ).

К МРИ относятся изделия, в конструкциях которых применяются радиоактивные источники ионизирующего излучения, используемые для проведения терапевтических процедур.

 

При использовании ИИИ в медицинских целях формируется медицинская доза на одного человека населения административной территории. В ЛПУ проводятся диагностические исследования с использованием рентгеновского излучения (рентгенологические исследования – далее РЛИ), излучения радиоактивных изотопов от РФП при выполнении РНДИ и излучения медицинских радионуклидных изделий (МРИ) при проведении лучевых терапевтических процедур (ЛТП).

При использовании ИИИ в медицинских целях основной вклад в дозу облучения на одного человека населения вносит рентгеновская диагностика, но при этом нельзя не учитывать также вклад в эту дозу других видов лучевой диагностики. К ним, в первую очередь, относятся РНДИ. Хотя РНДИ уступают большинству других методов лучевой диагностики по пространственному разрешению визуальных изображений исследуемых органов, тем не менее, обладают уникальной возможностью выявления функциональных нарушений различных органов и систем организма, недоступных клиническим методам.

Радиодиагностика -раздел медицинской диагностики, занимающийся неинвазивным исследованием организма человека при помощи физических методов с целью получения изображения внутренних структур. В частности, могут использоваться звуковые волны (главным образом ультразвук), электромагнитное излучение различных диапазонов, постоянное и переменное электромагнитное поле, элементарные частицы, излучаемые радиоактивными изотопами (радиофармпрепаратами).

Лучевая терапия -это метод лечения опухолевых заболеваний с помощью ионизирующего облучения. Такое излучение создается с помощью специальных аппаратов, в которых используется радиоактивный источник. Суть метода заключается в том, что при облучении в активно делящихся клетках накапливается множество мутаций, которые приводят их к гибели. Опухолевые клетки размножаются гораздо быстрее, чем здоровые, поэтому они более чувствительны к воздействию облучения.

Существует несколько вариантов лучевой терапии (радиотерапии). Прежде всего, они делятся по виду излучения - рентгентерапия и гамматерапия. По расположению источника относительно тела человека существует дистанционное облучение (на расстоянии), контактное, внутриполостное. Излучение может подводиться непосредственно к опухоли с помощью тонких игл (внутритканевое облучение). Лучевая терапия это самостоятельная медицинская специальность, которой занимаются лучевые терапевты. При необходимости проведения данного метода лечения врач онколог направляет пациента на консультацию к лучевому терапевту, который определяет вид терапии, объем лучевой нагрузки и длительность курса.

Сканирование — это управляемое пространственное перемещение пучка излучения (или детектора излучения) с целью последовательного исследования различных участков некоторого объекта.

67. Ускори́тель заря́женных части́ц — класс устройств для получения заряженных частиц (элементарных частиц, ионов) высоких энергий. Современные ускорители, подчас, являются огромными дорогостоящими комплексами, которые не может позволить себе даже крупное государство. К примеру, Большой адронный коллайдер в ЦЕРН представляет собой кольцо длиной почти 27 километров.

В основе работы ускорителя заложено взаимодействие заряженных частиц с электрическим и магнитным полями. Электрическое поле способно напрямую совершать работу над частицей, то есть увеличивать её энергию. Магнитное же поле, создавая силу Лоренца, только отклоняет частицу, не изменяя её энергии, и задаёт орбиту, по которой движутся частицы.

Конструктивно ускорители можно принципиально разделить на две большие группы. Это линейные ускорители, где пучок частиц однократно проходит ускоряющие промежутки, и циклические ускорители, в которых пучки движутся по замкнутым кривым (например, окружностям), проходя ускоряющие промежутки по многу раз. Можно также классифицировать ускорители по назначению: коллайдеры, источники нейтронов, бустеры, источники синхротронного излучения, установки для терапии рака, промышленные ускорители.

В медицине применяется для лучевой терапии, для «бескровной хирургии».

68. Дозиметрия ионизирующих излучений -раздел прикладной ядерной физики, в котором рассматриваются свойства ионизирующих излучений, физические величины, характеризующие поле излучения и взаимодействие излучения с веществом (дозиметрические величины). В более узком смысле слова Д. и. и. — совокупность методов измерения этих величин. Важнейший признак дозиметрических величин — их связь с радиационно-индуцированными эффектами, возникающими при облучении объектов живой и неживой природы. Под радиационно-индуцированными эффектами в общем смысле понимают любые изменения в облучаемом объекте, вызванные воздействием ионизирующих излучений (Ионизирующие излучения). Основной дозиметрической величиной является Доза ионизирующего излучения и ее модификации. Задача Д. и. и. — описание дозного поля, сформированного в живом организме в реальных условиях облучения.

Экспозиционная доза

Основная характеристика взаимодействия ионизирующего излучения и среды — это ионизационный эффект. В начальный период развития радиационной дозиметрии чаще всего приходилось иметь дело с рентгеновским излучением, распространявшимся в воздухе. Поэтому в качестве количественной меры поля излучения использовалась степень ионизации воздуха рентгеновских трубок или аппаратов. Количественная мера, основанная на величине ионизации сухого воздуха при нормальном атмосферном давлении, достаточно легко поддающаяся измерению, получила название экспозиционная доза.

Экспозиционная доза определяет ионизирующую способность рентгеновских и гамма-лучей и выражает энергию излучения, преобразованную в кинетическую энергию заряженных частиц в единице массы атмосферного воздуха. Экспозиционная доза — это отношение суммарного заряда всех ионов одного знака в элементарном объёме воздуха к массе воздуха в этом объёме.

В системе СИ единицей измерения экспозиционной дозы является кулон, деленный на килограмм (Кл/кг). Внесистемная единица — рентген (Р). 1 Кл/кг = 3876 Р.

Поглощенная доза

При расширении круга известных видов ионизирующего излучения и сфер его приложения, оказалось, что мера воздействия ионизирующего излучения на вещество не поддается простому определению из-за сложности и многообразности протекающих при этом процессов. Важным из них, дающим начало физико-химическим изменениям в облучаемом веществе и приводящим к определенному радиационному эффекту, является поглощение энергии ионизирующего излучения веществом. В результате этого возникло понятие поглощенная доза. Поглощенная доза показывает, какое количество энергии излучения поглощено в единице массы любого облучаемого вещества и определяется отношением поглощенной энергии ионизирующего излучения на массу вещества.

За единицу измерения поглощенной дозы в системе СИ принят грэй (Гр). 1 Гр — это такая доза, при которой массе 1 кг передается энергия ионизирующего излучения 1 Дж. Внесистемной единицей поглощенной дозы является рад. 1 Гр=100 рад.

Мощность дозы (интенсивность облучения) — приращение соответствующей дозы под воздействием данного излучения за единицу времени. Имеет размерность соответствующей дозы (поглощенной, экспозиционной и т. п.), делённую на единицу времени. Допускается использование различных специальных единиц (например, Зв/час, бэр/мин, сЗв/год и др.).

69. Эквивале́нтная до́за (E, HT,R) отражает биологический эффект облучения.

Это поглощённая доза в органе или ткани, умноженная на коэффициент качества данного вида излучения (WR), отражающий его способность повреждать ткани организма.

При воздействии различных видов излучения с различными коэффициентами качества эквивалентная доза определяется как сумма эквивалентных доз для этих видов излучения.

В единицах системы СИ эквивалентная доза измеряется в джоулях, деленных на килограмм (Дж/кг), и имеет специальное название — зиверт (Зв). Использовавшаяся ранее внесистемная единица — бэр (1 бэр = 0,01 Зв).

Дозиметрические приборы -дозиметры, устройства, предназначенные для измерения доз ионизирующих излучений или величин, связанных с дозами. Д. п. могут служить для измерения доз одного вида излучения (γ-дозиметры, нейтронные дозиметры и т. д.) или смешанного излучения. Д. п. для измерения экспозиционных доз рентгеновского и γ-излучений обычно градуируют в Рентгенах и называются рентгенметрами. Д. п. для измерения эквивалентной дозы, характеризующей степень радиационной опасности, иногда градуируют в Бэрах и их часто называют бэрметрами. Радиометрами измеряют активности или концентрацию радиоактивных веществ.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...