Различные подходы к трактовке понятия функции в курсе математики в средней школе
Введение
Функциональная линия школьного курса математики – одна из ведущих, определяющая стиль изучения тем в курсах алгебры и начала анализа. Её особенность состоит в представлении возможности установления разнообразных связей в обучении. В современном школьном курсе математики ведущим подходом считается генетический с добавлением элементов логического. Формирование понятий и представлений, методов и приёмов в составе функциональной линии в системе обучения строится так, чтобы внимание учащихся сосредотачивалось на: 1) выделенных и достаточно четко разграниченных представлениях, связанных с функцией; 2) установлении их взаимодействия при развёртывании учебного материала.
Различные подходы к трактовке понятия функции в курсе математики в средней школе
Задача. При каких значениях параметра а уравнение имеет ровно четыре корня?
Строим графики функций и в одной системе координат, воспринимая равенство как равенство значений выбранных функций.
Построим график четыре точки пересечения получаем для . При (координаты точки максимума (1,2)) получаем верхнее ограничение. Второй промежуток значений для : от точки минимума функции, т.е. . Основа решения – использование функциональных и графических представлений, а само решение – переход от исследования данного в уравнении к исследованию функции. При построении графика этой функции с помощью элементарных преобразований графиков наиболее трудным является оценивание значения выражения . В качестве подсказки можно воспользоваться неравенством:
Показанный метод называется функционально-графическим моделированием. Освоение его и с формальной, и с прикладной стороны в значительной мере подчинено изучение всей функциональной линии курсов алгебры и начала анализа.
Различают две основные математические трактовки понятия функции: 1) генетическую; 2) логическую. Основные понятия, используемые при генетической трактовке: переменная величина, функциональная зависимость переменных величин, формула (выражающая одну переменную через некоторую комбинацию других переменных), декартова система координат на плоскости. Достоинство такого подхода состоит в том, подчеркивая динамический характер понятия функциональной зависимости, выявляется модельный аспект понятия функции относительно изучения явлений природы. Например, общая схема применения функции для описания результатов опыта имеет вид: 1)провести эксперимент; 2)составить по результатам эксперимента таблицу значений связанных друг с другом величин; 3)построить по табличным данным график; 4)подобрать эмпирическим путём формулу для данной функции; 5)дать развёрнутую характеристику свойств функции; 6)истолковать установленные свойства функции на языке эксперимента. Однако ограничительная черта в этом подходе в том, что переменная всегда неявно предполагается пробегающей непрерывный ряд числовых значений. Поэтому понятие связывается с числовыми функциями числовог8о аргумента. Логическая трактовка: обучение функциональным представлениям следует строить на основе методического анализа понятия функции в поисках понятия алгебраической системы. Здесь функция – отношение специального вида между двумя множествами, удовлетворяющее условие функциональности. Начальный этап изучения – понятие отношения. Реализация логического подхода вызывает необходимость иллюстрировать понятие функции при помощи разнообразных средств: формулы, таблицы, задание функции стрелками, перечислением пар, использованием не только числового, но и геометрического материала(теперь и геометрическое преобразование можно рассматривать как функцию). Однако наработанные таким образом общие понятия в дальнейшем связываются только с числовыми функциями одного числового аргумента, поэтому при таком подходе наблюдается определённая избыточность в формировании функции как обобщённого понятия.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|