Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Итоги обработки наблюдений.

Сформируем основные выводы, которые можно сделать из анализа наблюдений.

Плотность вещества шаровой молнии практически совпадает с плотностью воздуха и обычно лишь немногим превосходит ее, т.е. она составляет вероятно около . Недаром шаровая молния стремится опустится вниз, разницу между силой тяжести и выталкивающей (архимедовой) силой компенсируют конвекционные воздушные потоки, а также сила, с какой действуют на молнию атмосферное электрическое поле.

Число шаровых молний , распавшихся за время , определяется следующим выражением:

   

где ; ; ; - число молний в момент . Доли короткоживущих () и долгоживущих () молний меняются в различных статистических выборках. Для наших данных они приблизительно одинаковы ( ).

 Наиболее вероятный диаметр шаровой молнии равен 10-15 см, а средний диаметр 20-30 см. Распределение размеров шаровой молнии описывается формулой, включающей один характерный размер :

        

 

 

где - плотность вероятности наблюдения шаровой молнии диаметром ; = 11 см для наших данных.

Температура шаровой молнии (не считая момента «взрыва») лишь относительно ненамного превышает температуру окружающего воздуха, достигая, по-видимому, всего нескольких сотен градусов (предположительно 500-600 К).

Вещество шаровой молнии является проводником с низкой работой выхода зарядов и поэтому обладает свойством легко рассеивать электрические заряды, накопившиеся в других проводниках.

Контакт шаровой молнии с заряженными проводниками приводит к появлению кратковременных импульсов электрического тока, довольно значительных по силе и проявляющихся иногда на сравнительно большом расстоянии от места контакта. Это вызывает перегорание предохранителей, срабатывание реле, вывод из строя электроприборов и другие аналогичные явления. Электрические заряда стекают со значительной площади через вещество шаровой молнии и рассеиваются в атмосфере.

Взрыв шаровой молнии во многих (не исключено, чти почти во всех) случаях является следствием такого кратковременного электрического разряда. Поражения шаровой молнией людей и животных также, по-видимому, связаны с импульсами тока, которые она вызывает.

 Запас энергии шаровой молнии может составлять от нескольких килоджоулей до нескольких десятков килоджоулей, в некоторых случаях (особенно при больших размерах молнии), возможно, до ста килоджоулей. Плотность энергии 1-10 . Однако эффекты взрыва могут определятся, по крайней мере в некоторых случаях, не энергией самой шаровой молнии, а энергией, накопленной во время гроза в заряженных проводниках и окружающих их электрических полях. Шаровая молния играет в этом случае роль триггерного механизма, включающего процесс освобождения этой энергии.

 Вещество шаровой молнии образует обособленную фазу в воздухе, обладающую значительной поверхностной энергией . На существование поверхностного натяжения указывают стабильность границы шаровой молнии, в том числе при перемещении ее в окружающем воздухе (иногда при сильном ветре), устойчивость сферической формы и восстановление ее после деформаций, возникающих от взаимодействия с окружающими телами. Необходимо отметить, что сферическая форма молнии восстанавливается и после больших деформаций, сопровождающихся распадом шаровой молнии на части.

Кроме того, на поверхности шаровой молнии нередко наблюдаются поверхностные волны. При достаточно большой амплитуде эти волны приводят к выбрасыванию капель вещества с поверхности, аналогичных брызгам жидкости.

Существование шаровой молнии не сферической формы: грушевидная, эллиптическая могут быть обусловлены поляризацией в сильных магнитных полях

 Шаровая молния может нести электрический заряд, который появляется, например, при поляризации в электрическом поле (особенно если заряды разных знаков по-разному стекают с ее поверхности). Движение шаровой молнии в условиях безразличного равновесия, при котором сила тяжести уравновешена архимедовой силой, определяется как электрическими полями, так и движением воздуха.

 Наблюдается корреляция времени жизни и размера молнии.

Долгоживущие молнии () оказываются в основном больших размеров (по данным они составляют 80% среди молний диаметром больше 30 см и только 20% среди молний диаметром меньше 10 см). Наоборот, короткоживущие молнии () имеют малый диаметр (80% молний диаметром меньше 10 см и 20% - больше 30 см).

 Анализируя наблюдения, можно предположить, что шаровая молния появляется там, где накапливается значительный электрический заряд, при мощной, но кратковременной эмиссии этого заряда в воздух.

 Исчезает шаровая молния в результате взрыва, развития неустойчивостей или из-за постепенного расходования запаса ее энергии и вещества (тихое погасание). Природа взрыва щаровой молнии не вполне ясна.

 Большая часть молний – около 60% - испускает видимый свет, относящийся к красному концу спектра (красный, оранжевый или желтый). Около 15% испускает свет в коротковолновой части спектра (голубой, реже – синий, фиолетовый, зеленый). Наконец, приблизительно в 25% случаев молния имеет белый цвет. Мощность излучаемого света -

порядка нескольких ватт. Поскольку температура молнии невелика, ее видимое излучение имеет неравновесную природу. Возможно, молния излучает также некоторое количество ультрафиолетового излучения, поглощением которого в воздухе можно объяснить голубой ореол вокруг нее.

 Теплообмен шаровой молнии с окружающей средой происходит через испускание значительного количества инфракрасного излучения. Если шаровой молнии действительно можно приписать температуру 500-600 К, то мощность равновесного теплового излучения, испускаемого молнией среднего диаметра ( см), порядка 0,5-1 кВт и максимум излучения лежит в области длин волн 5-10 мкм.

 Кроме инфракрасного и видимого излучений шаровая молния может испускать довольно сильное неравновесное радиоизлучение.

7.2. Гипотезы.

Все гипотезы, касающиеся физической природы шаровой молнии можно разделить на две группы. В одну группу входят гипотезы, согласно которым шаровая молния непрерывно получает энергию извне. Предполагается, что молния каким-то образом получает энергию, накапливающуюся в облаках и тучах, причем тепловыделение в самом канале оказывается незначительным, так что вся передаваемая энергия сосредотачивается в объеме шаровой молнии, вызывая его свечение. К другой группе относятся гипотезы, согласно которым шаровая молния становится самостоятельно существующим объектом. Этот объект состоит из некоего вещества, внутри которого происходят процессы, приводящие к выделению энергии.

Среди гипотез первой группы отметим гипотезу, предложенную в 1965 году академиком Капицей. Он подсчитал, что собственных запасов энергии шаровой молнии должно хватить на ее существование в течение сотых долей секунды. В природе, как известно, она существует гораздо дольше и нередко заканчивает свое существование взрывом. Возникает вопрос, откуда энергия?

Поиск решения привел Капицу к выводу, что «если в природе не существует источников энергии, еще нам неизвестных, то на основании закона сохранения энергии приходится принять, что во время свечения к шаровой молнии непрерывно подводится энергия, и мы вынуждены искать источник вне объема шаровой молнии». Академик теоретически показал, что шаровая молния представляет собой высокотемпературную плазму, существующую довольно длительное время за счет резонансного поглощения или интенсивного поступления энергии в виде радиоволнового излучения.

Он высказал мысль, что искусственная шаровая молния может быть создана с помощью мощного потока радиоволн, сфокусированного в ограниченную область пространства (Если молния – шар диаметром порядка 35-70 см.)

    ; где - длина волны,  - радиус шаровой молнии.

Но несмотря на многие привлекательные стороны данной гипотезы, она все же представляется несостоятельной: не объясняет характера перемещения шаровой молнии, зависимости ее поведения от воздушных потоков; в рамках данной гипотезы трудно объяснить хорошо наблюдаемую четкую поверхность молнии; взрыв такой шаровой молнии не должен сопровождаться выделением энергии и напоминает громкий хлопок.

Несколько лет назад в одной из лабораторий НИИ механики МГУ под руководством А.М. Хазена была создана еще одна теория огненного шара.

Согласно ей, в грозу под действием разности потенциалов начинается направленный дрейф электронов из облаков к земле. Попутно электроны, разумеется, сталкиваются с молекулами газов, из которых состоит воздух, причем вопреки здравому смыслу – тем реже, чем выше скорость электрона. В итоге отдельные атомы, достигшие некоей критической скорости, скатываются вниз, будто с горки. Такой «эффект горки» перестраивает войско заряженных частиц. Они начинают скатываться не беспорядочной толпой, а шеренгами, подобно тому, как накатываются волны морского прибоя. Только «прибой» этот обладает колоссальной скоростью – 1000 км/с! Энергии таких волн, как показывают расчеты Хазена, вполне достаточно, чтобы, настигая плазменный шар, подпитывать его своим электростатическим полем и некоторое время поддерживать в нем электромагнитные колебания. Теория Хазена ответила на некоторые вопросы: почему шаровая молния часто движется над землей, будто копируя рельеф местности? Объяснение следующее: с одной стороны, светящаяся сфера, обладая более высокой температурой по отношению к окружающей среде, стремится выплыть наверх под действием архимедовой силы; с другой стороны, под действием электростатических сил шар притягивается к влажной проводящей поверхности почвы. На какой-то высоте обе силы уравновешивают друг друга и шар словно катится по невидимым рельсам.

Иногда, правда, шаровая молния делает и резкие скачки. Их причиной может послужить либо сильный порыв ветра, либо изменение в направлении движения электронной лавины.

Нашлось объяснение и еще одному факту: шаровая молния стремится попасть внутрь построек. Любое строение, особенно каменное, поднимает в данном месте уровень грунтовых вод, а значит, возрастает электропроводность почвы, что и привлекает плазменный шар.

И наконец, почему шаровая молния по-разному заканчивает свое существование, иногда бесшумно, а чаще – взрывом? Здесь тоже виноват электронный дрейф. Если к шаровому «сосуду» подводится слишком много энергии, он в конце концов лопается от перегрева или, попав в область повышенной электропроводности разряжается, подобно обычной линейной молнии. Если же электронный дрейф по каким-либо причинам затухает, шаровая молния тихо угасает, рассеивая свой заряд в окружающем пространстве.

А.М. Хазен создам интересную теорию одного из самых загадочных явлений природы и предложил схему ее создания: «Возьмем проводник, проходящий через центр антенны передатчика сверхвысоких частот (СВЧ). Вдоль проводника, как по волноводу, будет распространятся электромагнитная волна. Причем проводник надо взять достаточно длинный, чтобы антенна электростатически не влияла на свободный конец. Подключим этот проводник к импульсному генератору высокого напряжения и, включив генератор, подадим на него короткий импульс напряжения, достаточный для того, чтобы на свободном конце мог возникнуть коронный разряд. Импульс надо сформировать так, чтобы возле его заднего фронта напряжение на проводнике не падало до нуля, а сохранялось на каком-то уровне, недостаточном для создания короны, то есть постоянно светящегося заряда на проводнике. Если менять амплитуду и время импульса постоянного напряжения, варьировать частоту т амплитуду поля СВЧ, то в конце концов на свободном конце провода даже после выключения переменного поля должен остаться и, возможно, отделиться от проводника светящийся плазменный сгусток».

Необходимость большого количества энергии мешает реализовать данный эксперимент.

И все же большинство ученых отдают предпочтение гипотезам второй группы.

Одна из них предполагает химическую природу шаровой молнии. Первым ее предложил Доминик Араго. А в середине 70-х годов ее детально разрабатывал Б.М.Смирнов. Предполагается, что шаровая молния состоит из обычного воздуха (имеющего температуру примерно на 100˚ выше температуры окружающей атмосферы), небольшой примеси озона  и оксидов азота и . Принципиально важную роль здесь играет озон, образующийся при разряде обычной молнии; его концентрация около 3%. Внутри шаровой молнии происходят химические реакции:

 

 

                                              

 

Они сопровождаются выделением энергии. При этом в объеме диаметром 20 см выделяется примерно 1 кДж энергии. Это мало, согласно подсчетам, запас энергии шаровой молнии таких размеров должен составлять примерно 1000 кДж. Недостатком рассматриваемой физической модели является также невозможность объяснения устойчивой формы шаровой молнии, существование поверхностного натяжения.

В поисках ответа была разработана новая физическая теория. Согласно этой гипотезы шаровая молния состоит из положительных и отрицательных ионов. Ионы образуются за счет энергии разряда обычной линейной молнии. Затраченная на их образование энергия и определяет запас энергии шаровой молнии. Она высвобождается при рекомбинации ионов. Благодаря электростатическим (кулоновским) силам, действующим между ионами, объем, заполненный ионами, будет обладать поверхностным натяжением, что и определяет устойчивую шаровую форму молнии.

Рассмотрим задачу:

Ионы заполняют объем сферы радиусом r =10 см, плотность ионного газа Оценить энергию, запасенную в таком объеме, если энергия ионизации

Решение: в единице рассматриваемого объема запасена энергия  Умножив ее на объем шара  находим искомую энергию.

   

Подсчитав числовые значения получим .

Эта энергия вполне согласуется со сделанными ранее оценками энергии шаровой молнии соответствующих размеров. В задаче была выбрана плотность ионного газа порядка , примерно такова плотность воздуха в условиях, близких к нормальным.

У рассматриваемой модели шаровой молнии есть одно уязвимое место. Дело в том, что если положительные и отрицательные ионы будут «перемешаны» по объему молнии, то они будут очень быстро рекомбинировать – за время порядка всего  Следовательно, такая шаровая молния не может существовать в течение секунды, ин говоря уж о минутах. Таким образом необходимо существенно затормозить (задержать) процесс рекомбинации ионов. Как это сделать?

Ответ дает кластерная гипотеза, предложенная в 1976 году И.П.Стахановым. Стаханов, как и многие другие физики исходил из того, что молния состоит из вещества, находящегося в состоянии плазмы. Плазма похожа на газообразное состояние с единственной разницей: молекулы вещества в плазме ионизированы, то есть потеряли (или наоборот приобрели лишние) электроны и перестали быть нейтральными. Это значит, что молекулы могут взаимодействовать не только как частицы газа – при столкновениях, но и на расстоянии с помощью электрических сил.

Разноименно заряженные частицы притягиваются. Поэтому в плазме молекулы стремятся вернуть себе потерянный заряд путем рекомбинации с оторванными электронами. Но после рекомбинации плазма превратится в обычный газ. Поддерживать жизнь плазмы можно только до тех пор, пока рекомбинации что-то мешает, - как правило, очень высокая температура.

Если шаровая молния – это плазменный шар, то она обязана быть горячей. Так рассуждали сторонники плазменных моделей до Стаханова. А он заметил, что существует и другая возможность. Ионы, то есть молекулы, потерявшие или захватившие лишний электрон, могут притянуть к себе обыкновенные нейтральные молекулы воды и окружить себя прочной «водяной» оболочкой, запирающей лишние электроны внутри и не дающий им воссоединятся со своими хозяевами. Такое возможно потому, что молекула воды имеет два полюса: отрицательный и положительный, за один из которых «хватается» ион в зависимости от своего заряда, чтобы притянуть молекулу к себе. Таким образом, сверхвысокие температуры больше не нужны, плазма может оставаться и «холодной», не горячее 200-300 градусов. Ион, окруженный водяной оболочкой, называется кластером, поэтому гипотеза профессора Стаханова получила имя кластерной.

Самым важным достоинством кластерной гипотезы стало то, что она продолжает не просто жить в науке, но и обогащаться новым содержанием. Группа исследователей из Института общей физики РАН, в которую входит профессор Сергей Яковленко, недавно получила поразительные новые результаты.

Выяснилось, что сама по себе водяная оболочка не может получиться столь плотной, чтобы помешать ионам рекомбинировать. Но рекомбинация приводит к возрастанию энтропии шаровой молнии, то есть меры ее беспорядка. Действительно, в плазме положительно и отрицательно заряженные молекулы отличаются друг от друга, по-особому взаимодействуют, а после рекомбинации они перемешиваются и становятся неразличимыми. До сих пор считалось, что в предоставленной самой себе системе беспорядок самопроизвольно возрастает, то есть в случае шаровой молнии рекомбинация произойдет сама собой, если ей как-то не помешать. Из результатов компьютерного моделирования и теоретических выкладок, проведенных в институте общей физики, следует совершенно иной вывод: беспорядок вносится в систему извне, например при хаотичных столкновениях молекул на границе шаровой молнии и воздуха, в котором она движется. Пока беспорядок не «накопится», рекомбинации не будет, даже несмотря на то, что молекулы стремятся к этому. Характер их движения внутри шаровой молнии таков, что при сближении разноименно заряженные молекулы будут пролетать друг мимо друга, не успевая обменяться зарядом.

Итак, согласно кластерной гипотезе шаровая молния представляет собой самостоятельно существующее тело (без непрерывного подвода энергии от внешних источников), состоящих из тяжелых положительных и отрицательных ионов, рекомбинация которых сильно заторможена вследствие гидратации ионов.

В отличие от многих других гипотез, данная выдерживает сравнение с результатами нескольких тысяч известных сейчас наблюдений и удовлетворительно объясняет многие из них.

 

Число различных гипотез о природе шаровой молнии значительно превосходит сотню, но мы разобрали только несколько. Ни одна из существующих в настоящее время гипотез не является совершенной, каждая имеет множество недостатков.

Поэтому, хотя принципиальные закономерности природы шаровой молнии проняты, данную проблему нельзя считать решенной – осталось множество тайн и загадок, а также нет конкретных способов создания ее в лабораторных условиях.

 

СЕВМАШВТУЗ

Кафедра физики

 

Курсовая работа

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...