Взаимодействие металлов со щелочами
⇐ ПредыдущаяСтр 3 из 3 Со щелочами взаимодействуют только те металлы, оксиды и гидроксиды которых обладают амфотерными свойствами. Происходит образование комплексной соли металла и выделяется газообразный водород из щелочи: 2NaOH + Zn0 + 2H2O = Na2[Zn+2(OH)4] + H20↑, или
69). Виды коррозии: Сплошная коррозия Местная коррозия Избирательная коррозия Подповерхностная коррозия Щелевая коррозия Межкристаллитная коррозия Коррозия под напряжением Коррозия при трении Газовая коррозия Атмосферная коррозия Подземная коррозия Контактная коррозия Если коррозия охватывает всю поверхность металла, то такой вид разрушения называется - сплошной коррозией. К сплошной коррозии относится разрушение металлов и сплавов под действием кислот, щелочей, атмосферы. Сплошная коррозия может быть равномерной, т. е. разрушение металла происходит с одинаковой скоростью по всей поверхности, и неравномерной, когда скорость коррозии на отдельных участках поверхности неодинакова. Примером равномерной коррозии может служить коррозия при взаимодействии меди с азотной, железа - с соляной, цинка - с серной кислотами, алюминия - с растворами щелочей. В этих случаях продукты коррозии не остаются на поверхности металла. Аналогично коррозируют железные трубы на открытом воздухе. Это легко увидеть, если удалить слой ржавчины; под ним обнаруживается шероховатая поверхность металла, равномерно распределенная по всей трубе.
При местной коррозии на поверхности металла обнаруживаются поражения в виде отдельных пятен, язв, точек. В зависимости от характера поражений местная коррозия бывает в виде пятен, т. е. поражений, не сильно углубленных в толщу металла; язв - поражений, сильно углубленных в толщу металла; точек, иногда еле заметных глазу, но глубоко проникающих в металл. Коррозия в виде язв и точек очень опасна для таких конструкций, где важно поддерживать условия герметичности и непроницаемости (емкости, аппараты, трубопроводы, применяемые в химической промышленности).
70). Химическая коррозия - это вид коррозионного разрушения металла, связанный с взаимодействием металла и коррозионной среды, при котором одновременно окисляется металл и происходит восстановление коррозионной среды. Химическая коррозия не связана с образованием, а также воздействием электрического тока. Движущей силой (первопричиной) химической коррозии является термодинамическая неустойчивость металлов. Они могут самопроизвольно переходить в более устойчивое состояние в результате процесса: Металл + Окислительный компонент среды = Продукт реакции При этом термодинамический потенциал системы уменьшается. По знаку изменения термодинамического потенциала можно определить возможность самопроизвольного протекания химической коррозии. Критерием обычно служит изобарно-изотермический потенциал G. При самопроизвольном протекании химического процесса наблюдается убыль изобарно-изотермического потенциала. Поэтому, если: Δ GТ < 0, то процесс химической коррозии возможен; Δ GТ > 0, то процесс химической коррозии невозможен; Δ GТ = 0, то система находится в равновесии.
По механизму коррозионного процесса различают два основных типа коррозии: химическую и электрохимическую. Под химической коррозией подразумевают взаимодействие металлической поверхности с окружающей средой, не сопровождающееся возникновением электрохимических (электродных) процессов на границе фаз. Механизм химической коррозии сводится к реактивной диффузии атомов или ионов металла сквозь постепенно утолщающуюся пленку продуктов коррозии (например окалины) и встречной диффузии атомов или ионов кислорода. По современным воззрениям этот процесс имеет ионно-электронный механизм, аналогичный процессам электропроводности в ионных кристаллах. Примером химической коррозии является взаимодействие металла с жидкими неэлектролитами или сухими газами в условиях, когда влага на поверхности металла не конденсируется, а также воздействие на металл жидких металлических расплавов. Практически наиболее важным видом химической коррозии является взаимодействие металла при высоких температурах с кислородом и др. газообразными активными средами (H S, SO, галогены, водяные пары, CO и др.). Подобные процессы химической коррозии металлов при повышенных температурах носят также название газовой коррозии. Многие ответственные детали инженерных конструкций сильно разрушаются от газовой коррозии (лопатки газовых турбин, сопла ракетных двигателей, элементы электронагревателей, колосники, арматура печей и т.д.). Большие потери от газовой коррозии (угар металла) несет металлургическая промышленность. Стойкость против газовой коррозии повышается при введении в состав сплава различных добавок (хрома, алюминия, кремния и др.). Добавки алюминия, бериллия и магния к меди повышают ее сопротивление газовой коррозии в окислительных средах. Для защиты железных и стальных изделий от газовой коррозии поверхность изделия покрывают алюминием (алитирование).
Методы защиты от коррозии: Современная защита металлов от коррозии базируется на следующих методах: Эти методы можно разделить на две группы. Первые два метода обычно реализуются до начала производственной эксплуатации металлоизделия (выбор конструкционных материалов и их сочетаний еще на стадии проектирования и изготовления изделия, нанесение на него защитных покрытий). Последние два метода, напротив, могут быть осуществлены только в ходе эксплуатации металлоизделия (пропускание тока для достижения защитного потенциала, введение в технологическую среду специальных добавок-ингибиторов) и не связаны с какой-либо предварительной обработкой до начала использования.
Широко применяются следующие основные решения защиты металлических конструкций от коррозии: 1. Защитные покрытия Металлические покрытия.
Неметаллические покрытия Покрытия, получаемые химической и электрохимической обработкой поверхности 2. Обработка коррозионной среды с целью снижения коррозионной активности. Примерами такой обработки могут служить: нейтрализация или обескислороживание коррозионных сред, а также применение различного рода ингибиторов коррозии, которые в небольших количествах вводятся в агрессивную среду и создают на поверхности металла адсорбционную пленку, тормозящую электродные процессы и изменяющую электрохимические параметры металлов. 3. Электрохимическая защита металлов. 4. Разработка и производство новых металлических конструкционных материалов повышенной коррозионной устойчивости путем устранения из металла или сплава примесей, ускоряющих коррозионный процесс (устранение железа из магниевых или алюминиевых сплавов, серы из железных сплавов и т.д.), или введения в сплав новых компонентов, сильно повышающих коррозионную устойчивость (например хрома в железо, марганца в магниевые сплавы, никеля в железные сплавы, меди в никелевые сплавы и т.д.). 5. Переход в ряде конструкций от металлических к химически стойким материалам 6. Рациональное конструирование и эксплуатация металлических сооружений и деталей (исключение неблагоприятных металлических контактов или их изоляция, устранение щелей и зазоров в конструкции, устранение зон застоя влаги, ударного действия струй и резких изменений скоростей потока в конструкции и др.).
71). Коррозия является электрохимической, если при выходе из металлической решётки образующийся катион вступает в связь не с окислителем, а с другими компонентами коррозионной среды; окислителю же передаются электроны, освобождающиеся при образовании катиона. Такой процесс возможен в тех случаях, когда в окружающей среде существуют два типа реагентов, из которых одни (сольватирующие или комплексообразующие) способны соединяться устойчивыми связями с катионом металла без участия его валентных электронов, а другие (окислители) могут присоединять валентные электроны металла, не удерживая около себя катионы. Подобными свойствами обладают растворы или расплавы электролитов, где сольватированные катионы сохраняют значительную подвижность. Таким образом, при электрохимической коррозии удаление атома из металлической решётки (что составляет суть любого коррозионного процесса) осуществляется в результате двух независимых, но сопряжённых, связанных между собой электрическим балансом, электрохимических процессов: анодного - переход сольватируемых катионов металла в раствор, и катодного - связывание окислителем освобождающихся электронов. Отсюда следует, что процесс электрохимической коррозии можно замедлить не только путём непосредственного торможения анодного процесса, но также воздействуя на скорость катодного. Наиболее распространены два катодных процесса: разряд водородных ионов (2е + 2H+ = H2) и восстановление растворённого кислорода (4e+O2+4H+ = 2H2O или 4e+O2+2H2O =4ОН-), которые часто называют соответственно водородной и кислородной деполяризацией. Механизм: Поверхность металла, находящегося во влажном воздухе, адсорбирует влагу из атмосферы и покрывается тонкой пленкой воды, содержащей атмосферные газы (О2, СО2, SO2 и др.) и, следовательно, обладающей заметной ионной проводимостью. Ионы металла переходят в раствор, образуется двойной электрический слой, и разность потенциалов. Если в контакте находятся два различных металла, то возникает гальванический элемент, работа которого проводит к разрушению материала анода. Роль второго металла могут выполнять микрокристаллы примесей, содержащихся в основном металле. Так, железо и его сплавы практически всегда содержат различные соединения железа с углеродом (например, Fe3C – цементит). Кристаллы железа исполняют роль анода, на котором протекает реакция: Fe – 2e- → Fe2+, а кристаллы цементита – роль катода, на котором идет процесс восстановления растворенного кислорода воздуха: О2 + Н2О + 4е- → 4ОН- Далее возможно протекание побочных процессов: Fe2+ +2OH- → Fe(OH)2 4Fe(OH)2 + O2 + 2H2O → 4Fe(OH)3 Микроскопические кристаллы железа и примесей образуют огромное количество гальванических элементов, работа которых будет сопровождаться разрушением металла и образованием ржавчины xFeO.yFe2O3.zH2O. Рыхлый слой ржавчины не предохраняет металл от дальнейшей коррозии, и процесс идет до полного разрушения материала.
Реакция восстановления кислорода протекает по приведенной выше схеме в щелочной или нейтральной среде. В кислой среде: О2 + 4Н+ + 4е-→ 2Н2О и выделение водорода 2Н+ + 2е- → Н2 Коррозия с участием кислорода называется коррозией с поглощением кислорода или коррозией с кислородной деполяризацией. Коррозия с участием ионов водорода называется коррозий с выделением водорода или коррозией с водородной деполяризацией.
Условия, способствующие электрохимической коррозии. 1. Положение металла в ряду активности металлов: чем они дальше расположены друг от друга, тем быстрее происходит коррозия. 2. Чистота металла: примеси ускоряют коррозию. 3.Неровности поверхности металла, трещины. 4.Грунтовые воды, морская вода, среда электролита. 5.Повышение температуры. 6.Действие микроорганизмов (грибы, бактерии и лишайники воздействуют на металл с высокой коррозионной стойкостью). Коррозия металлов иногда сопровождается образованием тонкой и плотной пленки соединений, защищающей его от дальнейшего разрушения. Это явление носит название пассивации и характерно для алюминия, хрома, кадмия, титана и др. Вещества, благоприятствующие образованию защитной пленки, носят название пассиваторов. Например, фосфорная кислота, гидрофосфаты, серная кислота с концентрацией выше 93% являются пассиваторами железа. Напротив, вещества, ускоряющие коррозию, называются активаторами коррозии, например хлорид-ионы являются активаторами коррозии железа.
Имея тенденцию отдавать электроны, в силу отрицательного электродного потенциала большинство металлов, в процессе коррозии окисляются. Если на защищаемый объект подать некий дополнительный положительный потенциал = поддержать на нем некий отрицательный потенциал порядка десятой доли вольта, то вероятность окислительной реакции падает почти до нуля. Данный способ защиты подразумевается обычно, когда говорят о катодной защите. Если в точку вероятной коррозии поместить некое количество вещества, имеющего более низкий электродный потенциал (например, цинк или магний для защиты железа), то окислительная реакция будет идти на нем. Следует обеспечить хороший электрический контакт между этим дополнительным защитным анодом (sacrificial anode) и защищаемым металлом. Догадались, зачем цинкуют трубы? А листы железа для кровли? Естественно, когда защитный анод растворится целиком, все пойдет своим чередом. Под пассивной защитой понимают покрытие защищаемого образца диэлектриком для предотвращения возникновения гальванической цепи. Например, можно покрасить металлическую конструкцию масляной краской и т.д. Протекторная защита осуществляется присоединением к защищаемому металлу большого листа, изготовленного из другого, более активного металла -протектора. В качестве протектора при защите стальных изделий обычно применяют цинк или сплавы на основе магния. При хорошем контакте между металлами защищаемый металл (железо) и металл протектора (например, цинк) оказывают друг на друга поляризующее действие. Согласно взаимному положению этих металлов в ряду напряжений, железо поляризуется катодно, а цинк - анодно. В результате этого на железе идет процесс восстановления того окислителя, который присутствует в воде (обычно растворенный кислород), а цинк окисляется.
72).
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|