Биосимметрия структурная — неклассическая
Приведенные в двух предыдущих параграфах данные позволяют сделать еще одно утверждение: на биообъектах реализована классическая симметрия абсолютно всех размерностей — точечная, линейная, плоская, пространственная. Однако не только классическая. Хотя биосимметрия с точки зрения различных неклассических теорий симметрии не изучена, ниже мы укажем по крайней мере на отдельные примеры реализации в живой природе главнейших из открытых в последние 50 лет симметрии. Просто и l-кратно антисимметричны все те организмы и их части, которые обладают l+1=n дисс-факторами. Таковы, например, диссимметрические корни, стебли, листья, побеги, чашечки, венчики, цветки многих растений; внутреннее строение животных, множество оптически активных биологических соединений — Сахаров, аминокислот, белков, нуклеиновых кислот и т.д. Еще один конкретный пример, антисимметрии можно найти в работе Маизенхаймера, Нормана и Штербе. Они сообщают о существовании у некоторых рыб, например анаблепс, двух половых рас. Одна половая раса состоит из D самцов и L самок; другая, напротив, из L самцов и D самок. Оплодотворение оказалось возможным только в пределах своей I половой расы и невозможным между L самцами и L самками, а также D самцами и D самками. С точки зрения учения о симметрии составляющие эти расы особи равны, симметричны (в известном приближении) друг другу в нескольких смыслах. Для более четкого их выявления примем только следующие обозначения: левое и правое по-прежнему будем обозначать буквами L и D, женский и мужской пол — знаками «+» и «—». Тогда мы придем к следующим равенствам: 1) совместимому (между особями L+ и L+,L — и L —, D+ и D+, D — и D —), 2) зеркальному (между особями L+ и D+, L — и D —); 3) совместимому антиравенству (между особями L— и L+, D — и D +); 4) зеркальному антиравенству (между особями L+ и D —, L — и D+)- Других случаев не существует. Заметим, что первые два равенства охватываются классической теорией симметрии, а все четыре — теорией антисимметрии.
Цветную симметрию выявляют биокристаллы, побеги растений с изменяющимися по ходу стебля формами листьев, венчики цветков растений с морфологически различными лепестками и вообще все такие биообразования, качества которых могут принимать три и более различных состояний одной природы. Симметрия подобия реализуется на биообъектах при их подобном росте и воспроизведении; она прекрасно видна на головках подсолнечника, раковинах некоторых моллюсков, верхней части побегов ряда растений. Гомологическую, или аффинную, симметрию выявляют динамическая симметрия биокристаллов, некоторые так называемые аффинно уродливые организмы. Криволинейную симметрию обнаруживают кроме рядов развития раковин брахиопод и цефалопод искривленные побеги стебли, корни, листья растений. Рассмотрим один из примеров подробнее. Нередко можно наблюдать, как билатерально-симметричные S-листья-(первого яруса) фасоли по мере роста искривляются, приобретая L или D конфигурацию. Мы экспериментально показали, (неопубликованные данные), что превращение S-листьев в L или D вызвано повышением содержания в меньших половинках L и D листьев ингибиторов (в частности, фенольной природы) и понижением содержания активаторов роста (типа ауксинов) и, наоборот, с повышением содержания в больших половинках этих листьев активаторов и понижением содержания ингибиторов роста. С этой картиной хорошо коррелировала и активность соответствующих ферментов и их ингибиторов. В результате, уже искусственно изменяя содержание ингибиторов или активаторов роста, например нанося их (после выделения из листьев) на те или иные половинки листа, нам удалось вызвать все мыслимые превращения форм листьев друг в друга.
Приведенные факты интересны с трех точек зрения. Во-первых, с ботанической. Любой ботаник сказал бы, что S-лист симметричен, а L и D — асимметричны. И это было бы так с точки зрения классического учения о симметрии и совершенно несправедливо с точки зрения учения о криволинейной симметрии. Действительно, после превращения из-за неравномерного роста половинок S-листа в L или D бывшая у S-листьев прямая плоскость симметрии не исчезает бесследно, а превращается в криволинейную плоскость отражения. В результате, как и S-листья, L и D листья также по-своему зеркально-симметричны: под действием отражения в сферическом зеркале у каждого из них меньшая половинка становится большей, большая — меньшей, а лист в целом самосовмещается. Во-вторых, эти факты интересны "с точки зрения теории симметрии. Вплоть до последнего времени теоретики считают, что наличие в объекте зеркальных элементов исключает какую бы то ни было возможность быть этому объекту L или D. Действительно, наличие зеркальной плоскости исключает способность S-листа быть L или D, но не мешает быть L или D искривленным листьям! И это, конечно, не случайно:у S-листа зеркальная плоскость прямолинейная, сохраняющая при отражениях расстояния между соответственными точками половинок, а у L и D листьев эта плоскость криволинейная, при отражениях не сохраняющая расстояний между соответственными точками половинок, «делая» их L или D. Разумеется, сказанное верно не только по отношению к листьям, но н по отношению к любым аналогичным объектам (например, к искривленным кристаллам кварца и серы). Таким образом, ограниченно справедливым оказывается одно из самых, казалось бы, незыблемых утверждений теории структурной симметрии. В-третьнх, эти факты интересны с точки зрения метода кристаллохимического анализа Е. С. Федорова, позволяющего по величине углов между гранями кристалла предсказывать с определенной вероятностью вещества, его слагающие. Приведенные выше биологические факты с S, L, D листьями интересны тем, что они указывают на явную возможность расширения границ федоровского метода, распространения его на биологические образооания. Можно и по их форме судить с определенной вероятностью о биофизикохимнческих и физиологических их особенностях (и наоборот). В данном случае это выразилось в том, что мы: 1) констатировали возникновение из S-листьев искривленных L и D с неравными половинками;
2) возложили «ответственность» за правизну и левизну, а также неодинаковость половинок на регуляторы роста, их ферментные системы и ингибиторы; 3) в соответствии с истинной симметрией форм S, L, D листьев построили гипотезу о пространственном распределении регуляторов роста, ферментов, ингибиторов, ожидая вполне определенные с точки зрения закономерностей форм S, L, D листьев результаты; 4) подтвердили гипотезу биохимическими анализами; 5) зная эти закономерности, по строгому плану изменили формы одних листьев в формы других. В заключение отметим: мы не думаем, чтобы теоретико-групповое изучение биообъектов свелось к формулировке получаемых результатов на языке только уже известных теорий симметрии. Дело в том, что так или иначе выявление видов симметрии конкретных биообъектов связывается с выявлением способов упаковки тех или иных компонентов в эти биообъекты. Часть из них удавалось и наверняка удастся расшифровать на основе стандартных экспериментальных методов и методов уже известных теорий структурной симметрии. Однако для расшифровки другой части биоупаковок рамки существующих теорий структурной симметрии придется существенно расширить хотя бы для математического анализа и вывода всех возможных способов заполнения пространств без и (или) с промежутками, нежесткими и (или) жесткими, растущими и (или) нерастущими, часто неправильной конфигурации выпуклыми и (или) вогнутыми компонентами. Для лучшего уяснения этой идеи полезно сравнить способы заполнения пространства в блоках кирпичами со способами заполнения пространства в апельсинах сочными ячейками. Понятно, что выявление видов биологических упаковок поможет глубже понять сущность жизни. С другой стороны, оно может буквально революционизировать производство тары и упаковок, производство, без которого, как известно, не обходится ни одна отрасль народного хозяйства.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|