Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Биосимметрия-геометрическая и динамическая




Как известно, проблема биологического простран­ства (и биологического времени) во всем ее объеме впервые была поставлена в четырех выпусках «Проб­лем биогеохимии» и в «Биогеохимических очерках» еще В. И. Вернадским. Основываясь на некоторых биологических данных и результатах.своих бесед с математиками М. М. Лузиным, Б. Н. Делоне и С. И. Финиковым, В. И. Вернадский полагал, что гео­метрией такого пространства может быть одна из указанных Э. Картаном, но не разработанных далее ри-мановых геометрий. В такой геометрии пространство должно было сводиться к точке, снабженной зароды­шем вектора посолонного (правого) или противосо-лонного (левого, против солнца) типа. В. И. Вернад­ский считал, что для этого пространства должна быть характерна неодинаковая встречаемость L и D форм, наличие в нем кривых линий и поверхностей. Послед­нее в своей концепции криволинейной симметрии, как мы помним, подчеркивал и академик Д. В. Наливкин (см. выше).

Сейчас исходя из учения о континуумах простран­ствах, непрерывных во всех трех направлениях, при­мерами которых могут быть однородные и изотроп­ные среды внутри вакуоль; о семиконтинуумах пространствах, прерывных в одних и непрерывных в других направлениях, примерами которых могут быть системы мышечных волокон или бесконечная стопка карандашей; о дисконтинуумах пространствах, пре­рывных во всех направлениях, примерами которых мо­гут быть решетчатые структуры биокристаллов, фер­ментов и вирусов, трехмерные сообщества организмов, двумерные орнаменты чешуи рыб, клеток биологиче­ских срезов, листьев при их мозаичном взаимораспо­ложении, складчатые слои полипептидных цепей, уже сейчас совершенно корректно можно утверждать, что биологических пространств не одно, а огромное, воз­можно бесконечное, множество. Однако главное— эмпирическое и теоретическое выявление вида и числа типов биопространств, характерных для них групп преобразовании и соответственных совокупностсн ин­вариантов, их геометрий,—вес это дело будущего. При этом можно смело ожидать нарушения в таких пространствах — по крайней мере в неоднородных и неизотропных—типа статистик (элементарных ча­стиц), а также ряда физических законов сохранения, связанных с признанием однородности и изотропности пространств, в которых они реализуются. Сказанное не вымысел. Мы помним, что нечто аналогичное физики, занимающиеся изучением твер­дого тела, констатируют на абногенных кристаллах. Пространства таких тел из-за симметрии, отвечающих соответствующим пространственным группам кристал­лов, неоднородны. Это значит, что в них имеются выделенные системы отсчета и нет обычного для одно­родных и изотропных пространств принципа относительности, нет закона дисперсии, а также самих ис­тинных частиц. Вместо этого приходится говорить о сложном законе дисперсии, квазиимпульсах, квазича­стицах, нарушении закона сохранения импульса, осо­бенностях статистики квазичастиц и т. д.

Безусловно, справедливое для абиогенных кристал­лических пространств, с еще большей категоричностью будет справедливо для гораздо более сложных, неод­нородных и неизотропных, апериодических и (или) периодических биологических пространств—дискон­тинуумов и семиконтинуумов. Более того. Даже кон­цепция квазичастиц здесь окажется применимой лишь отчасти, поскольку она разработана лишь для перио­дических, хорошо упорядоченных абиогенных кристал­лических пространств. Для изучения же особенно­стей биологических пространств, не обязательно кри­сталлических, явно потребуется разработка нового языка, лишь отчасти квантово-механического.

А теперь о динамической биосимметрии. Такая симметрия в живой природе, безусловно, должна иметь место, коль скоро мы констатируем наличие бес­конечного множества различных биологических про­цессов и взаимодействий и коль скоро они протекают в соответствии с определенными законами сохранения и константами. Изучение и открытие отвечающих этим процессам динамических симметрии и связанных с ни­ми законов сохранения, констант, построение на этой основе биологической науки, начиная от дисциплин, изучающих субмолекулярный уровень, н кончая дис­циплинами, изучающими биосферу в целом,—одна из фундаментальных задач биологии вообще н бносим-метрики в особенности.

Даже при первом подходе понятно, что динамиче­ские биосимметрнн следует искать прежде всего там, где сохранение, так сказать, лежит «на поверхно­сти»—в явлениях наследственности. При этом отрад­но отметить, что некоторые теоретико-групповые под­ходы в этом направлении с учетом данных молекуляр­ной биологии осуществлены. Так, в 1960 г. Р. Розен выступил с квантово-механической интерпретацией генетических явлений. По Розену, первичная генетиче­ская информация кодируется состоянием некоторой квантовой не обязательно наблюдаемой, переменной. Структура собственных состояний последней опреде­лялась групповым преобразованием, относительно ко­торого система оставалась инвариантной. Инвариант­ность кодовых свойств молекулы ДНК относительно перестановок идентичных оснований определяла мно­жественность аллелей и псевдоаллелей. Такая интер­претация в целом была поддержана Н. Рашевским и далее развита в терминах полугруппы с четырьмя ба­зисными элементами (нуклеотидами) К. Уве. Затем необходимо упомянуть в этой связи и работу Ш. Мо-ракацу, доказавшего возможность представления ге­нетических рекомбинаций в терминах абелевых групп (см. также работу Шиката Сиюти).

В последних своих работах Н. Рашевский и Р. Ро­зен пытаются представить сложные зависимости между структурой, свойствами н функциями биологи­ческих объектов в терминах математики отношений, которая, естественно, прямо связана с определенными преобразованиями и инвариантами. Здесь важную роль играют понятия множества, изо- и гомоморфиз­ма, т.е. взанмноодно- н одномногозначных соответст­вий между элементами различных множеств (биообъектов). Благодаря такому подходу авторам удалось теоретически предсказать существование ряда извест­ных и неизвестных биоявлений.

Поддерживая такого рода исследования живой природы, необходимо все же заметить, что во всех указанных работах сущность жизни отражается пока поверхностно и односторонне. В силу этого не прекращаются поиски все новых и новых биологических принципов и математических подходов. Например, со­вершенно новый круг проблем поднимает в работе «Воспринимаемое пространство и время» Г. Шел­линг. Принципиально иной подход к проблеме гене­тического кода недавно реализовал А. Г. Волохон-ский. Он установил любопытнейшее однозначное со­ответствие между общей структурой генетического ко­да, рядом биномиального разложения 26 и одним из платоновых тел — икосаэдром. Автор полагает, что икосаэдральная форма и пентамерная симметрия яв­ляются фундаментальными в организации живого ве­щества (хотя такие форма и симметрия хорошо из­вестны для ряда неорганических нульмерных тел, на­пример, для некоторых абиогенных точечных неорга­нических и органических молекул). С этой точки зре­ния генетический код представляется автором не как случайный продукт эволюционных блужданий (Ф. Крик, К. Уоуз), а как закономерное и необходи­мое следствие исходных принципов — икосаэдрально-сти и пентамерной симметрии, выбранных живой при­родой для его осуществления. Однако, согласно зако­ну соответствия общей теории систем (см. главу 3), генетический код должен так или иначе соответство­вать не только ряду биномиального разложения 26 и икосаэдру, но и другим системам — материальным и идеальным. Приведенные соображения делают выво­ды автора неоднозначными и спорными. Однако они ни в какой степени не снижают большой ценности установленных им красивых соответствий.

Всем сказанным мы хотели бы привлечь внимание биологов, физиков, философов, математиков к проб­леме динамической биосимметрии и биологических законов сохранения. Ввиду исключительного значения. последних для познания природы жизни необходимы энергичные поисковые работы в этом направлении, Можно надеяться, что на основе биологических зако­нов сохранения, разнообразных инвариантов, симмет­рии законов живой природы относительно тех или иных преобразований рано или поздно удастся глуб­же проникнуть в сущность живого, объяснить ход эво­люции, ее вершины, тупики, предсказать неизвестные сейчас ветви, теоретически возможные и действитель­ные числа типов, классов, семейств... организмов. И вообще нужно проанализировать вопрос о том, нельзя ли эволюцию материи в целом и внутри отдельных ее форм представить как групповые преобразования, най­ти их инварианты я на основе последних определить все возможные варианты эволюции в целом и в част­ностях, предсказать возможные ее ветви—число, ха­рактер и т. д. Таким образом, развитый здесь подход дает возможность поставить вопрос о неединственно­сти той картины.

III.ЗАКЛЮЧЕНИЕ

Выявление различных симметрий в природе, а иногда и постулирование их стало одним из методов теоретического исследования свойств микро-, макро- и мегамира. Возросла в связи с этим роль весьма сложного и абстрактного математического аппарата – теории групп –наиболее адекватного и точного языка для описания симметрии. Теория групп – одно из основных направлений современной математики. Значительный вклад в ее развитие внес французский математик Эварист Галуа.

С помощью теории групп русский минеролог и кристаллограф Е.С.Федоров решил задачу классификации правильных пространственных систем точек – одну из основных задач кристаллографии. Это исторически первый случай применения теории групп непосредственно в естествознании.

Существенное ограничение об однородном и изотропном пространственном распределении материи во Вселенной, налагаемое на уравнения общей теории материи и составляющее основу космологического принципа, позволило А.А. Фридману предсказать расширение Вселенной

Анализируя роль принципов инвариантности современный американский физик-теоретик Э. Вигнер, лауреат Нобелевской премии 1963 г., показавший эффективность применения теории групп в квантовой механике, выделил ряд ступеней в познании, поднимаясь на которые мы глубже и дальше обозреваем природу, лучше ее понимаем. Вначале в хаосе повседневных фактов человек замечает некоторые импирические закономерности. Затем, выделяя общие свойства природных явлений и анализируя их связи, он формулирует математические законы природы, учитывая при этом начальные условия, которые могут иметь любой, даже случайный характер. Наконец, синтезируя уже известные законы, находят ряд принципов, позволяющих дедуктивным путем определить уже известные и пока неизвестные утверждения, предсказывающие те или иные физические процессы и явления

Функция, которую несут принципы симметрии, по утверждению Э. Вигнера, состоит в наделении структурой законов природы или установлении между ними внутренней связи, так как законы природы устанавливают структуру или взаимосвязь в мире явлений. Так создаются теориии, охватывающие широкий круг физических явлений и процессов.

 

IV. Список литературы:

1.Урманцев Ю.А. Симметрия природы и природа симметрии

М.:Мысль,1974.

      2.Компанеец А.С. Симметрия в микро- и макромире.М.:Наука,

1978.

      3.Химическая энциклопедия.М:Большая российская энциклопедия,1996.

      4.Физическая энциклопедия.т.4,М.:Большая российская энциклопедия,1994.

      5.Сонин А.С.Постижение совершенства (симметрия, асимметрия, диссимметрия, антисимметрия).М.:Знание,1987.

        6.Карпенков С.Х. Концепции современного естествознания.М.:”ЮНИТИ”,1997

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...