Повторение. Решение задач (11 ч).
Стр 1 из 2Следующая ⇒ Формы организации обр.процесса Отбор материала обучения осуществляется на основе следующих дидактических принципов: систематизации знаний, полученных учащимися в начальной школе; соответствие обязательному минимуму содержания образования в основной школе; усиление общекультурной направленности материала; учет психолого-педагогических особенностей, актуальных для этого возраста; создание условий для понимания и осознания воспринимаемого материала. На изучение математики в 5 «а,в» классе МБОУ СОШ №6 отводится 5 ч в неделю, 170 часов в год. В том числе 14 контрольных работ, включая итоговую контрольную работу. Уровень обучения – базовый. Критерии и нормы оценки знаний, умений и навыков обучающихся по математике. 1. Оценка письменных контрольных работ обучающихся по математике. · Ответ оценивается отметкой «5», если: · работа выполнена полностью; · в логических рассуждениях и обосновании решения нет пробелов и ошибок; · в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала). · Отметка «4» ставится в следующих случаях: · работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки); · допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки). · Отметка «3» ставится, если: · допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.
· Отметка «2» ставится, если: · допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.
2. Оценка устных ответов обучающихся по математике · Ответ оценивается отметкой «5», если ученик: · полно раскрыл содержание материала в объеме, предусмотренном программой и учебником; · изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности; · правильно выполнил рисунки, чертежи, графики, сопутствующие ответу; · показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания; · продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков; · отвечал самостоятельно, без наводящих вопросов учителя; · возможны одна – две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя. · Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков: · в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа; · допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя; · допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя. · Отметка «3» ставится в следующих случаях: · неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);
· имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя; · ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме; · при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков. · Отметка «2» ставится в следующих случаях: · не раскрыто основное содержание учебного материала; · обнаружено незнание учеником большей или наиболее важной части учебного материала; · допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя. 3. Общая классификация ошибок. · При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты. 3.1. Грубыми считаются ошибки: · незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения; · незнание наименований единиц измерения; · неумение выделить в ответе главное; · неумение применять знания, алгоритмы для решения задач; · неумение делать выводы и обобщения; · неумение читать и строить графики; · неумение пользоваться первоисточниками, учебником и справочниками; · потеря корня или сохранение постороннего корня; · отбрасывание без объяснений одного из них; · равнозначные им ошибки; · вычислительные ошибки, если они не являются опиской; · логические ошибки. 3.2. К негрубым ошибкам следует отнести: · неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными; · неточность графика; · нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными); · нерациональные методы работы со справочной и другой литературой;
· неумение решать задачи, выполнять задания в общем виде. 3.3. Недочетами являются: · нерациональные приемы вычислений и преобразований; · небрежное выполнение записей, чертежей, схем, графиков. Учебно-тематический план
Содержание тем учебного курса 1. Натуральные числа и шкалы (15 ч). Натуральные числа и их сравнение. Геометрические фигуры: отрезок, прямая, луч, треугольник. Измерение и построение отрезков. Координатный луч. Цель: систематизировать и обобщить сведения о натуральных числах, полученные в начальной школе; закрепить навыки построения и измерения отрезков. Систематизация сведений о натуральных числах позволяет восстановить у обучающихся навыки чтения и записи многозначных чисел, сравнения натуральных чисел, а также навыки измерения и построения отрезков. Рассматриваются простейшие комбинаторные задачи. В ходе изучения темы вводятся понятия координатного луча, единичного отрезка и координаты точки. Здесь начинается формирование таких важных умений, как умения начертить координатный луч и отметить на нем заданные числа, назвать число, соответствующее данному делению на координатном луче. 2. Сложение и вычитание натуральных чисел (21 ч). Сложение и вычитание натуральных чисел, свойства сложения. Решение текстовых задач. Числовое выражение. Буквенное выражение и его числовое значение. Решение линейных уравнений.
Цель: закрепить и развить навыки сложения и вычитания натуральных чисел. Начиная с этой темы основное внимание уделяется закреплению алгоритмов арифметических действий над многозначными числами, так как они не только имеют самостоятельное значение, но и являются базой для формирования умений проводить вычисления с десятичными дробями. В этой теме начинается алгебраическая подготовка: составление буквенных выражений по условию задач, решение уравнений на основе зависимости между компонентами действий (сложение и вычитание). 3. Умножение и деление натуральных чисел (27 ч). Умножение и деление натуральных чисел, свойства умножения. Квадрат и куб числа. Решение текстовых задач. Цель: закрепить и развить навыки арифметических действий с натуральными числами. В этой теме проводится целенаправленное развитие и закрепление навыков умножения и деления многозначных чисел. Вводятся понятия квадрата и куба числа. Продолжается работа по формированию навыков решения уравнений на основе зависимости между компонентами действий. Развиваются умения решать текстовые задачи, требующие понимания смысла отношений «больше на... (в...)», «меньше на... (в...)», а также задачи на известные обучающимся зависимости между величинами (скоростью, временем и расстоянием; ценой, количеством и стоимостью товара и др.). Задачи решаются арифметическим способом. При решении с помощью составления уравнений так называемых задач на части учащиеся впервые встречаются с уравнениями, в левую часть которых неизвестное входит дважды. Решению таких задач предшествуют преобразования соответствующих буквенных выражений. 4. Площади и объемы (12 ч). Вычисления по формулам. Прямоугольник. Площадь прямоугольника. Единицы площадей. Цель: расширить представления обучающихся об измерении геометрических величин на примере вычисления площадей и объемов и систематизировать известные им сведения о единицах измерения. При изучении темы учащиеся встречаются с формулами. Навыки вычисления по формулам отрабатываются при решении геометрических задач. Значительное внимание уделяется формированию знаний основных единиц измерения и умению перейти от одних единиц к другим в соответствии с условием задачи. 5. Обыкновенные дроби (23 ч). Окружность и круг. Обыкновенная дробь. Основные задачи на дроби. Сравнение обыкновенных дробей. Сложение и вычитание дробей с одинаковыми знаменателями. Цель: познакомить обучающихся с понятием дроби в объеме, достаточном для введения десятичных дробей. В данной теме изучаются сведения о дробных числах, необходимые для введения десятичных дробей. Среди формируемых умений основное внимание должно быть привлечено к сравнению дробей с одинаковыми знаменателями, к выделению целой части числа. С пониманием смысла дроби связаны три основные задачи на дроби, осознанного решения которых важно добиться от обучающихся.
6. Десятичные дроби. Сложение и вычитание десятичных дробей (13 ч). Десятичная дробь. Сравнение, округление, слежение и вычитание десятичных дробей. Решение текстовых задач. Цель: выработать умения читать, записывать, сравнивать, округлять десятичные дроби, выполнять сложение и вычитание десятичных дробей. При введении десятичных дробей важно добиться у обучающихся четкого представления о десятичных разрядах рассматриваемых чисел, умений читать, записывать, сравнивать десятичные дроби. Подчеркивая сходство действий над десятичными дробями с действиями над натуральными числами, отмечается, что сложение десятичных дробей подчиняется переместительному и сочетательному законам. Определенное внимание уделяется решению текстовых задач на сложение и вычитание, данные в которых выражены десятичными дробями. При изучении операции округления числа вводится новое понятие — «приближенное значение числа», отрабатываются навыки округления десятичных дробей до заданного десятичного разряда. 7. Умножение и деление десятичных дробей (26 ч). Умножение и деление десятичных дробей. Среднее арифметическое нескольких чисел. Решение текстовых задач. Цель: выработать умения умножать и делить десятичные дроби, выполнять задания на все действия с натуральными числами и десятичными дробями. Основное внимание привлекается к алгоритмической стороне рассматриваемых вопросов. На несложных примерах отрабатывается правило постановки запятой в результате действия. Кроме того, продолжается решение текстовых задач с данными, выраженными десятичными дробями. Вводится понятие среднего арифметического нескольких чисел. 8. Инструменты для вычислений и измерений (17 ч). Начальные сведения о вычислениях на калькуляторе. Проценты. Основные задачи на проценты. Примеры таблиц и диаграмм. Угол, треугольник. Величина (градусная мера) угла. Единицы измерения углов. Измерение углов. Построение угла заданной величины. Цель: сформировать умения решать простейшие задачи на проценты, выполнять измерение и построение углов. У обучающихся важно выработать содержательное понимание смысла термина «процент». На этой основе они должны научиться решать три вида задач на проценты: находить несколько процентов от какой-либо величины; находить число, если известно несколько его процентов; находить, сколько процентов одно число составляет от другого. Продолжается работа по распознаванию и изображению и геометрических фигур. Важно уделить внимание формированию умений проводить измерения и строить углы. Китовые диаграммы дают представления обучающимся о наглядном изображении распределения отдельных составных частей какой-нибудь величины. В упражнениях следует широко использовать статистический материал, публикуемый в газетах и журналах. В классе, обеспеченном калькуляторами, можно научить школьников использовать калькулятор при выполнении отдельных арифметических действий. Повторение. Решение задач (11 ч). Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс математики 5 класса. Резерв (4 ч)
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|