Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Система ТN-C, ТN-S и ТN-С-S в электроустановках переменного тока до 1000 В




Тип системы заземления – показатель, характеризующий отношение к земле нейтрали трансформатора на подстанции и открытых проводящих частей у потребителя, а также устройство нейтрального проводника. Различают ТN-, ТТ-, IТ-системы, две первых из которых имеют заземленную нейтраль на трансформаторной подстанции, а третья – изолированную. ТN-система по устройству нейтрального проводника в свою очередь делится на ТN-S, ТN-С, ТN-С-S-системы.

Первая буква в обозначении типа заземления определяет характер заземления источника питания:

Т – непосредственное присоединение одной точки токоведущих частей источника питания (обычно нейтрали) к земле;

I – все токоведущие части изолированы от земли или одна точка заземлена через сопротивление.

Вторая буква определяет характер заземления открытых проводящих частей электроустановки здания:

Т – непосредственная связь открытых проводящих частей электроустановки здания с землей, независимо от характера связи источника питания с землей;

N - непосредственная связь открытых проводящих частей электроустановки здания с точкой заземления источника питания.

Последующие (за N) буквы определяют характер этой связи – функциональный способ устройства нулевого защитного и нулевого рабочего проводников:

S – функции нулевого защитного (РЕ) и нулевого рабочего (N) проводников обеспечиваются раздельными проводниками;

С – функции нулевого защитного и нулевого проводников обеспечиваются одним общим проводником (РЕN).

Таким образом, тип системы заземления – это комплексная характеристика, включающая в себя, с одной стороны, питающую электрическую сеть, с другой стороны – электроустановку здания. Поэтому относить тип системы заземления к характеристике только питающей электрической сети неправильно.

Основные требования к электроустановкам зданий предъявляются применительно к конкретным типам систем заземления. Тип заземления является общей характеристикой питающей электрической сети и электроустановки здания.

Иллюстрации различных типов заземления представлены на примере условной электроустановки здания, которая подключена к питающей электрической сети, состоящей из трансформаторной подстанции (ПС) и воздушной (ВЛ) или кабельной (КЛ) линии электропередачи (приложение Е).

В системе TN-C источник питания (трансформаторная подстанция) имеет непосредственную связь токоведущих частей (обычно – нейтрали трансформатора) с землей (глухозаземленная нейтраль). Все открытые проводящие части электроустановки здания имеют непосредственную связь с заземляющим устройством источника питания. Для обеспечения этой связи применяется совмещенный нулевой защитный и рабочий проводник (РЕN).

К системе TN-C относятся трехфазные четырехпроводные и однофазные двухпроводные сети существующих зданий старой постройки. Отсутствие специального нулевого защитного (заземляющего) проводника в существующих электропроводках однофазных сетей создает опасность поражения персонала электрическим током.

В ряде случаев технические средства информатики и телекоммуникаций устанавливаются в помещениях, где отсутствует заземление и одновременно имеется нетокопроводящее покрытие пола, на котором накапливается статическое электричество. Из-за отсутствия заземления и возникновения разрядов статического электричества при касании оператора клавиатуры или корпуса персонального компьютера происходят сбои в работе, например, «зависания», и могут возникнуть повреждения оборудования, нарушения в работе программного обеспечения и потери информации.

В настоящее время в России широкое распространение имеет система TN-C, в которой открытые проводящие части электроустановки соединяются с точкой заземления источника питания совмещенным нулевым защитным и рабочим проводником. Эта система относительно простая и дешевая. Однако она не позволяет обеспечить надлежащий уровень электробезопасности.

Требованиями нормативной документации применение системы TN-C на вновь строящихся и реконструируемых объектах не допускается.

В системе TN-S (рисунок Е.2) источник питания имеет непосредственную связь токоведущих частей с землей. Все открытые проводящие части электроустановки здания имеют непосредственную связь с заземляющим устройством источника питания. Для обеспечения этой связи применяется отдельный нулевой защитный проводник (РЕ).

Такая схема исключает обратные токи в проводнике РЕ, что снижает риск электромагнитных помех. При эксплуатации системы TN-S необходимо следить за соблюдением назначения проводников РЕ и N. Оптимальным случаем с точки зрения минимизации помех является наличие встроенной (пристроенной) трансформаторной подстанции, что позволяет обеспечить минимальную длину проводника от ввода кабелей до главного заземляющего зажима.

В системе TN-C-S (рисунок Е.3) источник питания также имеет непосредственную связь токоведущих частей с землей. Все открытые проводящие части электроустановки здания имеют непосредственную связь с точкой заземления источника питания. Для обеспечения этой связи на головном (по ходу энергии) участке питающей сети и (или) электрической цепи применяется совмещенный нулевой защитный и рабочий проводник (РЕN), в остальной части – отдельный нулевой защитный проводник (РЕ).

Точка разделения РЕN-проводника в системе TN-С-S на нулевой защитный и нулевой рабочий проводники может быть выполнена не только на вводе в здание, но и в другом месте электроустановки. В первом варианте в первой части электроустановки открытые проводящие части будут соединены с РЕN-проводником, во второй – с нулевым защитным проводником. Запрещается объединять нулевой защитный и нулевой рабочий проводники за той точкой электроустановки по ходу энергии, где произошло разделение РЕN-проводника.

Для системы TN-C-S желательно выполнение повторного заземления нейтрали. Система при наличии встроенной (пристроенной) подстанции не требует повторного заземления, так как имеется основной заземлитель на ТП.

В системе IТ источник питания не имеет непосредственной связи токоведущих частей с землей.

Электроустановка должна быть заземлена или присоединена к заземляющему устройству через заземляющее сопротивление, имеющее достаточно большую величину. Такая связь осуществляется либо в точке нейтрали установки, либо в нейтрали, созданной искусственно, которая может быть соединена напрямую с землей, если соответствующее однополюсное заземляющее сопротивление имеет достаточную величину. Если точка нейтрали не существует, то фазный проводник должен быть заземлен через заземляющее сопротивление.

Система IТ применяется, как правило, в электроустановках зданий и сооружений специального назначения.

В системе ТТ источник питания имеет непосредственную связь токоведущих частей с землей. Все открытые проводящие части электроустановки здания имеют непосредственную связь с землей через заземлитель, электрически независимый от заземлителя нейтрали источника питания.

Схемы ТТ в электроустановках административных зданий, как правило, не применяются. Основная область применения схем ТТ – заземление стационарных установок проводной связи, радиорелейных станций, радиотрансляционных узлов проводного вещания и антенн систем коллективного приема телевидения.

Система TN-S имеет ограниченное распространение, так как для ее реализации следует использовать ВЛ (КЛ), которые имеют на один проводник больше, чем в системах TN-C, TN-C-S и ТТ.

При использовании существующих питающих электрических сетей могут быть реализованы три системы: TN-C, TN-C-S и ТТ.

Наиболее перспективным для практического применения следует признать системы TN-C-S и ТТ, которые позволяют, с одной стороны, обеспечить более высокий уровень электробезопасности, чем система TN-C, а с другой стороны – не проводить реконструкцию существующих электрических сетей. При проектировании и монтаже электроустановок зданий из металла рекомендуется применять в качестве основного типа системы заземления ТТ.

Проводник одной и той же ВЛ (КЛ) в зависимости от типа системы заземления может выполнять разные функции. Для электроустановок первого и второго зданий нулевой проводник является совмещенным нулевым защитным и рабочим проводником, для электроустановок третьего здания – только нулевым рабочим проводником. То есть, в зависимости от типа системы заземления, один и тот же нулевой проводник ВЛ (КЛ) может выполнять функции как совмещенного нулевого защитного и рабочего проводника, так и только нулевого рабочего проводника.

Билет № 16

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...