Принцип действия тиристоров, диодов и область их применения
Тиристор — полупроводниковый прибор с двумя устойчивыми состояниями, имеющий три или более p-n переходов, который может переключаться из закрытого состояния в открытое и наоборот. В зависимости от количества электродов и формы ВАХ тиристоры называются: динисторы; тринисторы; симмисторы. Рис. 1. Схематическое обозначение тиристоров: а — динистор; б — динистор, изображенный в виде сочетания 2-х транзисторов; в — тринистор. Крайние p-n переходы j1 и j3 называют эмиттерными, а средний j2 — коллекторным (соответственно области р1 и n2 называют эмиттерными, а области n1 и р2 — базами). Выводы от крайних областей называют эмиттерными, а от одной из средних базовым или управляющим. Вывод, от которого прямой ток течет во внешнюю цепь, называют катодным, а к которому ток течет из цепи — анодным. Анализ процессов, происходящих в тиристоре, упрощается, если представить его в виде сочетания двух транзисторов типа p-n-р и n-p-n (рис. 1, б). Существует несколько вариантов объяснения работы тиристоров. Рассмотрим один из них. Если к тиристору приложить напряжение, как показано на рисунке, то переход j1 и j3 окажутся смещенными в прямом направлении, а переход j2 — в обратном. Следовательно, эмиттеры обоих транзисторов будут инжектировать неосновные носители в области базы. В результате диффузии (дрейфа) неосновные носители достигают коллекторного перехода и полем перехода затягиваются в область коллектора. Некоторая часть носителей инжектированных эмиттерами рекомбинирует в базовых областях с основными носителями заряда. Обычно в транзисторах рекомбинационный ток основных носителей поступает от внешнего источника через базовый электрод. В рассматриваемом приборе базовый электрод отсутствует. В этом случае рекомбинационный ток каждой из баз образуется из обратного тока коллекторного перехода и тока противоположного эмиттера. Тогда ток коллекторного перехода где a = a1 + a2 — суммарный коэффициент передачи тока. Таким образом, переключение тиристора в открытое состояние с резким увеличением тока будет происходить при условии a = 1. Напомним, что коэффициент передачи тока эмиттера транзистора возрастает с увеличением тока эмиттера в результате уменьшения рекомбинационной составляющей тока эмиттера и появления электрического поля в базе транзистора. Коэффициент передачи тока эмиттера так же растет при увеличении напряжения на коллекторе из-за уменьшения толщины базы и увеличения коэффициента умножения в коллекторном переходе. Все эти процессы происходят и в тиристорной структуре при увеличении прямого напряжения.
В ольт-амперная характеристика динистора. На рис. 2 изображена ВАХ динистора. Для тиристора, находящегося в состоянии, соответствующем переходному участку характеристики (точка А на рис. 2), суммарный коэффициент передачи тока стремится возрасти из-за увеличения проходящего тока. Но суммарный коэффициент передачи тока для переходного участка характеристики равен единице. Дальнейшее возрастание суммарного коэффициента передачи тока предотвращается уменьшением напряжения на коллекторном переходе и, следовательно, на всем тиристоре. Тиристоры изготавливаются только из кремния, т.к. при этом обеспечиваются меньший ток утечки Iкбо в запертом состоянии, большее напряжение и большая зависимость суммарного коэффициента передачи тока от тока и напряжения.
Для уменьшения начальных величин коэффициента передачи тока, и, следовательно, увеличения напряжения переключения, одну из баз тиристора делают довольно толстой по сравнению с диффузионной длиной соответствующих носителей. Если к p-n-p-n структуре приложить обратное напряжение, т.е. минус на р1 и плюс на n2 (рис. 1), то центральный переход j2 будет смещен в прямом направлении, а крайние переходы j1 и j3 — в обратном направлении. ВАХ тиристора при обратном напряжении аналогична обратной характеристике полупроводникового диода. Ввиду того, что напряжения пробоя переходов j1 и j3 различны, обратная ветвь характеристики будет определятся обратной характеристикой одного из переходов j1 и j3 (более высоковольтного).
Вольт-амперные характеристики тринистора и симмистора. Значительно расширяется область использования тиристоров, снабженных управляющим базовым электродом — тринисторов (рис. 1, в).
При подаче на управляющий электрод напряжения такой полярности, чтобы прилегающий к этой базе эмиттерный переход был включен в прямом направлении, через него потечет ток управления IУ. При этом увеличится инжекция из n-эмиттера, что приведет к накоплению избыточных зарядов в базовых областях тиристора и к переключению его в открытое состояние при общем напряжении на тиристоре менее напряжения переключения. Следовательно, с помощью тока управления можно изменить напряжение переключения тиристора (рис. 3). Применение тиристоров: Тиристоры широко применяются в устройствах автоматики и электроники в качестве мощных электронных ключей. Они могут выполнять функции: высоковольтных электронных ключей; управляемых выпрямителей; усилителей импульсов; регуляторов мощности в цепях переменного тока; регуляторов скорости вращения электродвигателей; инверторов (преобразователей постоянного тока в переменный) и др. Важным достоинством тиристорных устройств является очень высокий КПД (более 90%), т.к. тиристор обладает малыми потерями. Падение напряжения на нем не превышает 1,5 В при любом прямом токе. Мощные силовые тиристоры выпускаются на токи до 2000 А и напряжение до 3000 В. Диод — двухэлектродный электронный прибор, обладает различной проводимостью в зависимости от направления электрического тока. Электрод диода, подключённый к положительному полюсу источника тока, когда диод открыт (то есть имеет маленькое сопротивление), называют анодом, подключённый к отрицательному полюсу — катодом.
Д иоды бывают электровакуумными (кенотроны), газонаполненными (газотроны, игнитроны, стабилитроны), полупроводниковыми и др.. В настоящее время в подавляющем большинстве случаев применяются полупроводниковые диоды. Полупроводниковый диод, двухэлектродный электронный прибор на основе полупроводникового (ПП) кристалла. Понятие "П. д." объединяет различные приборы с разными принципами действия, имеющие разнообразное назначение. Система классификации П. д. соответствует общей системе классификации полупроводниковых приборов. В наиболее распространённом классе электропреобразовательных П. д. различают: выпрямительные диоды, импульсные диоды, стабилитроны, диоды СВЧ (в т. ч. видеодетекторы, смесительные, параметрические, усилительные и генераторные, умножительные, переключательные). Среди оптоэлектронных П. д. выделяют фотодиоды, светоизлучающие диоды и ПП квантовые генераторы. Н аиболее многочисленны П. д., действие которых основано на использовании свойств электронно-дырочного перехода (р—n-перехода). Если к р—n-переходу диода (рис. 1) приложить напряжение в прямом направлении (т. н. прямое смещение), т. е. подать на его р-область положительный потенциал, то потенциальный барьер, соответствующий переходу, понижается и начинается интенсивная инжекция дырок из р-области в n-область и электронов из n-области в р-область — течёт большой прямой ток (рис. 2). Если приложить напряжение в обратном направлении (обратное смещение), то потенциальный барьер повышается и через р—n-переход протекает лишь очень малый ток неосновных носителей заряда (обратный ток). На рис. 3 приведена эквивалентная схема такого П. д. Применение диодов: 1) Диодные выпрямители: 2) Диодные детекторы: Диоды в сочетании с конденсаторами применяются для выделения низкочастотной модуляции из амплитудно-модулированного радиосигнала или других модулированных сигналов. Диодные детекторы применяются почти во всех[источник не указан 20 дней] радиоприёмных устройствах: радиоприёмниках, телевизорах и т. п.. Используется квадратичный участок вольт-амперной характеристики диода.
3) Диодная защита Диоды применяются также для защиты разных устройств от неправильной полярности включения и т. п. Известна схема диодной защиты схем постоянного тока с индуктивностями от скачков при выключении питания. Диод включается параллельно катушке так, что в «рабочем» состоянии диод закрыт. В таком случае, если резко выключить сборку, возникнет ток через диод и сила тока будет уменьшаться медленно (ЭДС индукции будет равна падению напряжения на диоде), и не возникнет мощного скачка напряжения, приводящего к искрящим контактам и выгорающим полупроводникам. 4) Диодные переключатели: Применяются для коммутации высокочастотных сигналов. Управление осуществляется постоянным током, разделение ВЧ и управляющего сигнала с помощью конденсаторов и индуктивностей. 5) Диодная искрозащита транзи́стор - полупроводнико́вый трио́д — радиоэлектронный компонент из полупроводникового материала, обычно с тремя выводами[1], способный от небольшого входного сигнала управлять значительным током в выходной цепи, что позволяет его использовать для усиления, генерирования, коммутации и преобразования электрических сигналов. В настоящее время транзистор является основой схемотехники подавляющего большинства электронных устройств и интегральных микросхем. Транзисторами также называются дискретные электронные приборы, которые, выполняя функцию одиночного транзистора, имеют в своем составе много элементов, конструктивно являясь интегральной схемой, например составной транзистор или многие транзисторы большой мощности[2].
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|