Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Методы получения низких температур




Испарение жидкостей. Для получения и поддержания низких температур обычно используют сжиженные газы <http://ru.wikipedia.org/wiki/%D0%93%D0%B0%D0%B7>. В сосуде Дьюара <http://ru.wikipedia.org/wiki/%D0%A1%D0%BE%D1%81%D1%83%D0%B4_%D0%94%D1%8C%D1%8E%D0%B0%D1%80%D0%B0>, содержащем сжиженный газ, испаряющийся под атмосферным давлением, достаточно хорошо поддерживается постоянная температура нормального кипения хладоагента. Наиболее часто используемые хладагенты - жидкий азот <http://ru.wikipedia.org/wiki/%D0%90%D0%B7%D0%BE%D1%82> и жидкий гелий <http://ru.wikipedia.org/wiki/%D0%93%D0%B5%D0%BB%D0%B8%D0%B9>. Ранее использовавшиеся сжиженные водород <http://ru.wikipedia.org/wiki/%D0%92%D0%BE%D0%B4%D0%BE%D1%80%D0%BE%D0%B4> и кислород <http://ru.wikipedia.org/wiki/%D0%9A%D0%B8%D1%81%D0%BB%D0%BE%D1%80%D0%BE%D0%B4> сейчас используются достаточно редко из-за повышенной взрывоопасности испарений. Азот же и гелий практически инертны и опасность представляет только резкое расширение при переходе из жидкого в газообразное состояние.

Снижая давление над свободной поверхностью жидкости можно получить температуру ниже нормальной точки кипения этой жидкости. Например, откачкой паров азота можно добиться температуры до температуры тройной точки 63 K, откачкой паров водорода (над твёрдой фазой) можно добиться температуры 10 K.

Испаряя жидкий гелий в вакууме, можно получить температуру всего на 0,7 К больше абсолютного нуля. Еще более низкую температуру (до 0,3 К) дает сжиженный изотоп гелия 3Не.

Чтобы охладить какой-либо предмет до нужной температуры, достаточно поместить его в ванну с соответствующим сжиженным газом. Таким образом, основная задача при получении очень низких температур - это сжижение газов. Его можно добиться двумя методами.

Дросселирование. Первый метод - дросселирование, то есть расширение сжатого газа в вентиле. При протекании через сужение проходного канала трубопровода - дроссель, либо через пористую перегородку молекулы газа преодолевают силу взаимного притяжения, их тепловое движение замедляется, происходит понижение давления газа или пара, и газ охлаждается.

Этот метод применяется в простейших установках для ожижения газов. Газ сжимают компрессором, охлаждают в теплообменнике и расширяют в дроссельном вентиле. При таком расширении часть газа ожижается.

У каждого газа есть определенная температурная точка - инверсионная температура. При дросселировании газа, находящегося выше инверсионной температуры, он уже не охлаждается, а нагревается. Поэтому применять метод дросселирования можно, только предварительно охладив газ ниже его инверсионной температуры. Для большинства газов инверсионная температура выше комнатной, но у водорода она равна 193 К (-80° С), а у гелия даже 33 К (-240° С).

Изменение температуры при малом изменении давления в результате дросселирования определяется производной , называемой коэффициентом Джоуля-Томсона.

Расширение с совершением внешней работы. При другом способе получения холода сжатый газ заставляют не только расширяться, но и совершать механическую работу в цилиндре с поршнем или в турбине. Молекулы газа, ударяясь о поршень или о лопатки турбины, передают им свою энергию; скорость молекул сильно снижается, и газ интенсивно охлаждается.

Расширительные машины, применяемые при этом способе, называются детандерами. Они могут быть поршневого или турбинного типа. На рисунке 1 показано, как устроен аппарат для ожижения гелия с поршневым детандером. В аппарат из компрессора поступает гелий, сжатый при комнатной температуре давлением около 20 атмосфер. Сжатый гелий предварительно охлаждается в теплообменнике и в ванне с жидким азотом. Большая часть сжатого гелия расширяется в поршневом детандере, а гелий, оставшийся сжатым, охлаждается холодным газом до 11-12 К и после теплообменника расширяется в дроссельном вентиле. При этом часть газа превращается в жидкость и скапливается в сборнике.

Гелий, оставшийся в газообразном состоянии, подается в теплообменник для охлаждения следующих порций газа, нагревается до комнатной температуры и вновь сжимается компрессором. При этом сжижается примерно 10% подаваемого в аппарат гелия. Для теплоизоляции от окружающей среды, все холодные узлы аппарата помещены в герметичный кожух - своеобразный термос, в котором поддерживается высокий вакуум.

 

Рис. 1 - Воздушный ожижитель Клода 1 - воздушный компрессор; 2 - детандер; 3 - дроссель; 4 - жидкий воздух

Адиабатическое размагничивание. Метод основан на эффекте выделения теплоты из парамагнитных солей при их намагничивании и последующем поглощении теплоты при их размагничивании. Это позволяет получать температуры вплоть до 0,001 K. Для получения очень низких температур более всего подходят соли с малой концентрацией парамагнитных ионов, то есть соли, в которых соседние парамагнитные ионы отделены друг от друга немагнитными атомами.

Эффект Пельтье. Эффект Пельтье используют в термоэлектрических охлаждающих устройствах. Он основан на понижении температуры спаев полупроводников при прохождении через них постоянного электрического тока. Величина выделяемого тепла и его знак зависят от вида контактирующих веществ, силы тока и времени прохождения тока, то есть количество выделяемого тепла пропорционально количеству прошедшего через контакт заряда.

Криостат растворения. В процессе охлаждения используется смесь двух изотопов <http://ru.wikipedia.org/wiki/%D0%98%D0%B7%D0%BE%D1%82%D0%BE%D0%BF> гелия <http://ru.wikipedia.org/wiki/%D0%93%D0%B5%D0%BB%D0%B8%D0%B9>: 3He <http://ru.wikipedia.org/wiki/%D0%93%D0%B5%D0%BB%D0%B8%D0%B9-3> и 4He <http://ru.wikipedia.org/wiki/%D0%93%D0%B5%D0%BB%D0%B8%D0%B9-4>. При охлаждении ниже 700 мК, смесь испытывает самопроизвольное разделение фаз <http://ru.wikipedia.org/w/index.php?title=%D0%A0%D0%B0%D0%B7%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5_%D1%84%D0%B0%D0%B7&action=edit&redlink=1>, образуя фазы богатую 3He и богатую 4He. Смесь 3He / 4He ожижается в конденсаторе <http://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BD%D0%B4%D0%B5%D0%BD%D1%81%D0%B0%D1%82%D0%BE%D1%80>, который подсоединен через дроссель к области богатой 3He смесительной камеры. Атомы 3He, проходя через границу раздела фаз, отбирают энергию у системы. Рефрижераторы растворения с непрерывным циклом обычно используются в низкотемпературных физических экспериментах.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...