Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Значение и применение исследований физики низких температур




 

Исследование низких температур привело к открытию двух удивительных явлений - сверхпроводимости и сверхтекучести. Оба эти явления весьма отличаются от свойств, которыми обладают вещества при обычных температурах. При понижении температуры в свойствах веществ начинают проявляться особенности, связанные с наличием взаимодействий, которые при обычных температурах подавляются сильным тепловым движением атомов. Новые закономерности, обнаруженные при низких температурах, могут быть последовательно объяснены только на основе квантовой механики.

В частности, принцип неопределённости квантовой механики и вытекающее из него существование нулевых колебаний при абсолютном нуле температуры объясняют тот факт, что гелий остаётся в жидком состоянии вплоть до 0.

С 60-х гг. 20 в. открыт ряд интересных эффектов, в которых особое значение имеет пространственная когерентность волновых функций на макроскопических расстояниях (сверхпроводящее туннелирование, эффект Джозефсона).

Большое значение имеет изучение свойств жидкого 3He, который представляет собой пример нейтральной квантовой ферми-жидкости. Как теперь выяснено, при температурах около 3 мК и давлении около 34 бар 3He претерпевает фазовое превращение, сопровождающееся значительным уменьшением вязкости (переходит в сверхтекучее состояние).

Развитие физики низких температур в значительной степени способствовало созданию квантовой теории твёрдого тела, в частности общей теоретической схемы, согласно которой состояние вещества при низких температурах может рассматриваться как суперпозиция идеально упорядоченного состояния, соответствующего 0 К, и газа элементарных возбуждений - квазичастиц. Введение различных типов квазичастиц (фононы, дырки, магноны и др.) позволяет описать многообразие свойств веществ при низких температурах.

Термодинамические свойства газа элементарных возбуждений определяют наблюдаемые макроскопические равновесные свойства вещества. В свою очередь, методы статистической физики позволяют предсказать свойства газа возбуждений из характера связи энергии и импульса квазичастиц (закона дисперсии).

Изучение теплоёмкости, теплопроводности и других тепловых и кинетических свойств твёрдых тел при низких температурах даёт возможность установить закон дисперсии для фононов и других квазичастиц. Температурная зависимость намагниченности ферро- и антиферромагнетиков объясняется в рамках закона дисперсии магнонов (спиновых волн). Изучение закона дисперсии электронов в металлах составляет ещё один важный раздел физики низких температур.

Ослабление тепловых колебаний решётки при гелиевых температурах и применение чистых веществ позволили выяснить особенности поведения электронов в металлах. Применение низких температур играет большую роль при изучении различных видов магнитного резонанса.

Охлаждение до сверхнизких температур применяется в ядерной физике для создания мишеней и источников с поляризованными ядрами при изучении анизотропии рассеяния элементарных частиц. Такие источники позволили, в частности, поставить решающие эксперименты по проблеме несохранения чётности.

Низкие температуры применяются при изучении полупроводников, оптических свойств молекулярных кристаллов и во многих других случаях.

В химической промышленности низкие температуры используют при производстве синтетического аммиака, красителей, для сжижения и разделения газовых смесей, выделения солей из растворов и т.д.

В нефтеперерабатывающей промышленности холод необходим при производстве высокооктановых бензинов, некоторых сортов смазочных масел и др.

Искусственное охлаждение применяется и в машиностроении (например, для холодной посадки деталей), строительстве (замораживание грунтов), медицине, при сооружении искусственных катков круглогодичной эксплуатации, для опреснения морской воды и т.д.

Одна из главных областей применения низких температур в технике - разделение газов. Производство кислорода и азота в больших количествах основано на сжижении воздуха с последующим разделением его в ректификационных колоннах на азот и кислород. Применение жидких кислорода и азота многообразно, в частности кислород служит окислителем в ракетном топливе.

Низкие температуры используют для получения высокого вакуума методом адсорбции на активированном угле или цеолите (адсорбционный насос) или непосредственной конденсации на металлических стенках сосуда с хладоагентом. Высокий вакуум и охлаждение до низких температур позволяют имитировать условия, характерные для космического пространства, и проводить испытания материалов и приборов в этих условиях.

Охлаждение до температур жидкого воздуха или азота начало находить важные применения в медицине. Используя приборы, способные производить локальное замораживание тканей до низких температур, осуществляют оперативное лечение мозговых опухолей, урологических и других заболеваний. Имеется также возможность длительного хранения живых тканей при низких температурах.

Другое направление технических применений низких температур связано с приложениями сверхпроводимости. Здесь наиболее важную роль играет создание сильных магнитных полей (~ 103 кэ), необходимых для ускорителей заряженных частиц, трековых приборов (пузырьковых камер и др.), магнитогидродинамических генераторов и многообразных лабораторных исследований.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...