Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

История становления информатики как междисциплинарного направления во второй половине XX века




Введение

Теория информации — одна из наиболее бурно развивающихся отраслей современного научного знания. За полвека с момента возникновения она насчитывает почти столько же работ, сколько и теория относительности — один из фундаментальных разделов современной физики. В настоящее время формула количества информации К. Шеннона, наверное, известна не менее, чем формула взаимосвязи массы и энергии А. Эйнштейна. К тому же если теория относительности применяется только физиками, то теория информации проникает во многие науки о живой и неживой природе, обществе и познании, ее используют и физики, и биологи, и экономисты, и ученые многих других специальностей.

Теория информации нужна не только науке, но и производству. Современное производство стало очень сложным; в связи с этим на первый план в нем выдвигаются вопросы организации и управления, основанные на процессах передачи и преобразования информации. Без изучения и широкого использования информации было бы чрезвычайно затруднено дальнейшее преобразование вещества и энергии в процессе производства. Кроме того, совсем недавно появился и в настоящее время бурно развивается принципиально новый сектор производства — производство не вещественно-энергетических, а чисто информационных товаров.

Естественно, что интенсивное развитие теории информации и ее приложений ставит ряд вопросов философского характера. И прежде всего возникает проблема выявления содержания самого понятия «информация». При анализе этого понятия мы вынуждены вовлекать в рассмотрение материальный субстрат, на котором развертываются процессы движения информации — информационные системы. Поэтому в обзор философской теории информации входит как неотъемлемая часть изложение основных положений философской теории систем.


История становления информатики как междисциплинарного направления во второй половине XX века

В зависимости от степени углубления в прошлое, реальная история информатики может насчитывать тысячелетия. В данном случае речь идет о ее становлении как междисциплинарного научного направления во второй половине XX века.

Термин «информатика» происходит от французских слов «информация» и «автоматика». Формально так называется наука об автоматической обработке информации. Он используется в России и Восточной Европе. В Западной Европе и США вместо него используют термин «компьютерная наука» (Computer science). Содержательные определения информатики многочисленные и многообразны. Тем не менее, почти во всех из них фигурирует ее фундаментальное понятие «информация». Оно толкуется также неоднозначно.

Становление информатики как науки началось с разработки теории информации. При этом были выделены три основных, относительно независимых ее аспекта: синтаксис, семантика и прагматика. Все дальнейшие исследования в этой области, их направления и подходы к пониманию сущности информации и её использованию опирались на внутреннее единство решаемых в них задач. Изначально они имели преимущественно прикладной характер.

Этимология слова «информация» восходит к латинскому informatio – ознакомление, разъяснение, представление, понятие. К XX веку оно обычно использовалось как синоним «осведомленности», «сведения», «сообщения». Бурное развитие всевозможных средств связи (телеграф, телефон, радио, телевидение и др.) выдвинуло ряд насущных проблем: как обеспечить надежность передачи сообщений при наличии помех, какой способ кодирования сообщения применять в том или ином случае, как закодировать сообщение, чтобы обеспечить передачу смысла и т.д. Эти проблемы требовали разработки теории передачи сообщений. Одним из ее основных вопросов был вопрос о возможности измерения количества информации.

Попытки количественного измерения информации предпринимались неоднократно. Первые важные достижения были получены американцами Х. Найквистом (1924 г.) и Р. Хартли (1928 г.). Они определили логарифмическую меру информации для сообщений, состоящих из последовательности любого числа символов. Английский математик Р. Фишер (1938 г.) ввел аналогичную точную меру для нужд прикладной статистики. Однако наиболее важный шаг в разработке основ теории информации был сделан в 1948 году выдающимся американским инженером и математиком Клодом Шенноном.

Обобщая и расширяя учения своих предшественников, в частности теорию Р. Хартли, К. Шеннон в своей работе «Математическая теория связи» использовал теоретико-вероятностный подход. Понятие информации он определял формально через энтропию, содержащуюся в передаваемых сообщениях. За единицу информации Шеннон принял то, что впоследствии окрестили «битом» (слово было предложено Тьюки). Учет вероятностей символов позволил ему получить более точную формулу для количества информации в реальных сообщениях, примерно вдвое сокращавшую время их передачи.

Шенноном была предложена общая схема системы связи, состоящая из пяти элементов (источника информации, передатчика, канала передачи сигнала, приемника и адресата), сформулированы теоремы о пропускной способности, помехоустойчивости, кодировании и др. Его идеи быстро распространяли свое влияние на самые различные области знаний.

Однако теория информации К. Шеннона не являлась универсальной. «Статистическое понятие информации и основанная на нем мера ее количества выражают прежде всего “структурно-синтаксическую” сторону передачи информации, т.е. отношения сигналов, знаков, сообщений и т.д. друг к другу. С ним поэтому связано определенное огрубление идеи информации – отвлечение от смысла, ценности для получателя, разнородности и других характеристик передаваемых сообщений».

Ограниченность этой теории иллюстрируют многие парадоксы. Например, анализ статистической информации «по Шеннону» показывает, что текст одной и той же книги, напечатанный с большей частотой строк на одной странице, должен нести в себе большую информацию, чем исходный. В действительности это, конечно, не так. В таком случае, следует признать, что наибольшей информацией обладает случайная, бессистемная последовательность букв, что наибольшую информацию несет в себе текст, лишенный всякого смысла.

Осознание ограниченности теории информации Шеннона привело к возникновению других подходов в её исследовании. Наряду с энтропийным, наиболее употребительными среди них являются: алгоритмический, комбинаторный, структурный, семантический и прагматический. Последние два определяют качественные характеристики информации.

Семантическая концепция информации возникла как попытка измерения смысла сообщений в форме суждений, являющихся носителями знания и понимаемых человеком. Для нее наиболее важным оказывается анализ содержательных характеристик информации. При этом «семантическая информация высказывания определенного языка исключает некоторые “возможные миры”, альтернативы, выражаемые средствами данного языка: чем больше альтернатив исключает высказывание, тем более оно семантически информативно».

Развитие семантических теорий информации во многом было обусловлено прогрессом теории «значения» языковых выражений, прежде всего их логико-семантических вариантов. Первой такой попыткой стала теория Р. Карнапа и И. Бар-Хиллела (1952 г.). Большинство последующих семантических интерпретаций понятия информации исходят из нее. Наиболее важную роль у них играют понятия «описание возможного состояния» предмета рассуждения и «индуктивная вероятность». Абсолютное информационное содержание предложения они определяли логической вероятностью его истинности.

Вскоре, однако, было замечено, что проблема определения вероятностных мер и мер информации не могут решаться на чисто логических основаниях. Финский философ и логик Я. Хинтикка (1968 г.) предложил её решение на основе различения понятий «поверхностная» и «глубинная» информация, обращающихся друг в друга в процессе познания. Это позволило объяснить каким образом логические и математические доказательства дают приращение поверхностной информации (знания), измерять его даже в случаях их частичного выполнения. Однако сказать тоже самое о глубинной информации подход Хинтикки не позволил.

Интересный вариант семантической теории информации выдвинул наш соотечественник Ю. А. Шрейдер (кстати, защитивший докторскую диссертацию по философии). Он определил зависимость информации, содержащейся в некотором сообщении, от степени развития тезауруса получателя, т.е. от его минимального запаса знаний. Е. С. Вентцель проиллюстрировала ее простым примером: учебник по высшей математике для трехлетнего ребенка будет нести нулевую информацию. Школьнику старших классов он уже даст кое-что. Максимальную информацию извлечет из него студент того курса, для которого учебник предназначен. Но по мере дальнейшего развития тезауруса получатель будет узнавать все меньше нового (для профессора математики он будет нести значительно меньше содержательной информации). Однако вычислить эту зависимость непротиворечивым образом не удалось.

Суть прагматических концепций информации состоит в том, чтобы, опираясь на результаты синтаксической и семантической теорий информации, выявить её ценность (полезность). Она обладает полезностью и ценностью для получателя потому, что может быть использована. В этом случае ее измерение основывается на понятии цели.

Существует несколько подходов к измерению ценности информации. Они разрабатываются в теории принятия решений, в теории игр, в исследовании операций, других теориях. Одним из первых на эту процедуру обратил внимание также отечественный ученый А. А. Харкевич. Он считал, что величину ценности информации можно выражать через приращение вероятности достижения цели после получения информации. Для уточнения её прагматического аспекта начали применять также понятие субъективной вероятности (в смысле разумной уверенности, убеждения). Было вполне очевидно, поскольку субъект может иметь самые разные цели, ценность (полезность) информации является относительной. А в случае дезинформации она вообще становится отрицательной.

Прагматические концепции информации вносят существенный вклад в анализ роли субъектного фактора и его возможностей в ситуациях неопределённости. Ценность оказывается таким свойством, которое определяет принятие решения ее приемником. «Иначе говоря, ценность информации влияет на процессы управления в системе (приемнике), так что можно говорить о первостепенной важности ценностного аспекта информации в управлении, в частности социальном. Для управления важно не всякое разнообразие, а только такое, которое полезно, значимо для системы, существенно не всякое снятие неопределенности, а только такое, в результате которого возникает знание, могущее служить руководством к действию».

Большой шаг вперед в развитии информатики был сделан с появлением электронных компьютеров и изобретением их эффективной архитектуры Джоном фон Нейманом. Он венгр, сын банкира. В 1925 году защитил диссертацию «Аксиоматическое построение теории множеств» на звание доктора философии в Будапештском университете, а в 1930 году эмигрировал в США. Будучи универсалом в математике, Нейман применял ее методы в экономике, лингвистике, физике, других, в том числе военных, науках и, естественно, в кибернетике. Накопив за годы войны уникальный опыт численных расчетов на быстродействующих машинах первого поколения (в создании которых принимал непосредственное участие), он предложил ряд новых идей организации ЭВМ. Важнейшей из них была идея хранимой программы. В результате их реализации возникла логическая схема, структура, образно выраженная как архитектура ЭВМ, во многих чертах сохранившаяся до настоящего времени. За это фон Неймана иногда называют «отцом» всего компьютерного направления.

Логическая структура ЭВМ нового типа включала в себя пять основных блоков: входное устройство для ввода в машину всей необходимой информации используемой в решении задач; запоминающее устройство; устройство управления, организующее взаимодействие запоминающего устройства с арифметическим; арифметическое устройство, выполняющее все необходимые операции; выходное устройство, сообщающее полученные результаты пользователю.

После работ над проектами компьютерных архитектур Нейман приступил к созданию общей логической теории автоматов (искусственных и естественных). В отличие от кибернетики Винера, в ней основное внимание уделяется цифровым вычислительным машинам и дискретной математике. Винер сосредоточивал внимание на аналоговых (следящих) системах и непрерывной математике, причем всячески подчеркивал важность обратной связи в управлении. Нейман, также по существу используя обратную связь и в конструкции машин, и в блок-схемах программ, не считал необходимым специально подчеркивать это.

Задуманная Джоном фон Нейманом машина была построена под руководством Джулиана Бигелоу в Институте высших исследований США. В честь Неймана ее назвали ДЖОНИАК. Она послужила прототипом для изготовления других вычислительных машин. Именно ДЖОНИАК позволил осуществить важные расчеты при создании водородной бомбы, превосходившие по своему объему все, что когда-либо было сосчитано человечеством.

Джулиан Хаймли Бигелоу был инженером-новатором в области вычислительной техники. Для реализации неймановского проекта его рекомендовал Н. Винер, знавший его и как ученого. В соавторстве с Бигелоу и Розенблютом в 1943 году они опубликовали статью «Поведение, целенаправленность и телеология», ставшую предвестницей зарождающейся кибернетики.

Важный вклад в развитие информатики сделал англо-американский этнограф, антрополог, психолог, культуролог, кибернетик и философ Грегори Бейтсон. Относительно его философии можно сказать следующее. Если Тьюринг нетрадиционно поставил проблему отношения мышления к бытию, то Бейтсон нашел ее нетрадиционное решение. Оно обозначено в самих названиях его основных работ: «Разум и Природа. Необходимый союз» (1980), «Священный союз. Будущие шаги к экологии Разума» (1990).

Бейтсон перенес внимание кибернетики с естествознания на социально-гуманитарные науки. Связывая социальную, клиническую, сравнительную и педагогическую психологию посредством понятия «коммуникации», он истолковывает последнее как обмен информацией со средой. Преодоление декартовского дуализма осуществляется им на основе теории логических типов Рассела. Таким образом, он приходит к идее иерархичности систем, где часть подчиняется целому. Разум, как своеобразная кибернетическая система, также зависит от более общей системы – от окружающей среды. Коммуникация между ними осуществляется посланиями. Поскольку в каждом из них содержится информация и о самом послании, с позиций системы и ее подсистемы истолковать его можно по-разному. В ситуациях смешения контекстов возникают различные патологии мышления, которые проявляются в виде логических парадоксов, нарушений психики (случаи шизофрении), дезориентации поведения, социальных и экологических кризисов. Разрешение этих проблем предполагает системный кибернетический подход в методологии и самопозиционировании. Знание большей интерактивной системы Бейтсон называет системной мудростью.

На основе идей Бейтсона возник целый ряд неортодоксальных концепций: «прагматика человеческих коммуникаций», «стратегическая психотерапия», «системная терапия», «анти-психиатрия», «нейролингвистическое программирование».

Крупнейшим теоретиком и влиятельным практиком в области социального управления с помощью кибернетики был Энтони Стаффорд Бир. Родился он в Лондоне, в колледже обучался философии, в армии познакомился с исследованием операций. С его именем связывают становление кибернетики второго порядка, которая более интересуется целостностью и внутренней связностью систем, их эффективной организацией и самоорганизацией.

Бир критиковал традиционные управленческие структуры за их неспособность подстраиваться к темпу перемен. Взамен он предложил модель жизнеспособной системы. Она построена на основе кибернетического закона необходимого разнообразия и принципа его ограничения. Прототипом модели стала нервная система человека.

Бир утверждал, что любая жизнеспособная система в первую очередь решает задачу управления сложностью в постоянно меняющейся внешней среде, и уже во вторую, пытается реализовать свою целевую функцию (например, максимизацию прибыли). Качество решения второй задачи напрямую зависит от результатов управления разнообразием и адаптивных свойств системы.

Модель жизнеспособной системы Бира предполагает общий язык для решения проблем. Она дает информационный каркас для компьютеризации, показывает ее возможности и границы, является инструментом для диагностики организационных патологий и способом описания динамики кризисов. Вместе с тем, она представляет собой проект самоуправления для социальных организаций различных уровней. Не случайно, за консультацией к Биру обращались крупнейшие компании и правительства более 20 стран мира.

Обобщая сказанное относительно становления информатики как междисциплинарного направления во второй половине ХХ века, можно констатировать следующее. Возникновение и развитие этой науки обусловливалось совершенствованием методологии. Семиотический подход позволил исследовать информацию в знаковой форме. Таким образом, определились ее синтаксический, семантический и прагматический аспекты. Причем изучение синтаксиса информации изначально осуществлялось с помощью математики. Кибернетический подход к многообразным естественным и искусственным системам управления позволил исследовать информационные процессы. Системный подход стал основой анализа организации и функционирования закрытых и открытых информационных систем. Существенным достижением синергетического подхода оказывается переход к исследованию сверхсложных саморазвивающихся информационных систем. К ним относятся: нейросистема головного мозга человека и ее модели в форме искусственного интеллекта (Г. Хакен), информационно-коммуникативные системы (Н. Луман), информационное общество в целом.

Контекст современной постнеклассической науки характеризуется глубокими интегративными тенденциями на основе идеи глобального эволюционизма; тенденциями гуманитаризации и гуманизации, предполагающими исследование человекоразмерных систем и систем, сравнимых с человеком по совершенству; доминированием нелинейного мышления; другими особенностями. В этом контексте многие понятия информатики изменяются, уточняются или обретают иной смысл. Так произошло, например, с ее базовым понятием «информация». То же происходит и с её прагматическим понятием «цель». Последняя обретает подлинно человеческий смысл – осознанного ценностного представления бытия. Все это логично приводит к необходимости активного участия философии в исследованиях информатики, причем изначально, а не в форме обобщений уже полученных результатов.

Значение и важную методологическую роль философии в развитии информатики отмечали многие ее основоположники. В настоящее время эта роль возрастает. Совместные работы И. Пригожина и И. Стенгерс, С.П. Курдюмова и Е.Н. Князевой могут быть примерами плодотворного сотрудничества представителей современной постнеклассической науки и философии.

Перспективы взаимодействия философии с информатикой определяются возникающими на их стыке многочисленными проблемами, среди которых основными являются:

– проблемы функционирования и развития информационно-коммуникативной среды и ее технологизации посредством компьютерной техники;

- проблемы осмысления феномена Интернета;

- эпистемологические проблемы компьютерной революции;

- социально-философские проблемы информационного общества.

 


Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...