Компенсация тепловых удлинений трубопроводов
В процессе эксплуатации трубопроводы изменяют свою температуру в связи с изменением температуры окружающей среды и перекачиваемых жидкостей. Колебание температуры стенки трубопровода приводит к изменению его длины. Закон изменения длины трубопровода выражается уравнением Δ=α ·l(ty-to), где Δ — удлинение или укорочение трубопровода; а — коэффициент линейного расширения металла труб (для стальных труб α = 0,000012 1/°С); l — длина трубопровода; ty— температура укладки трубопровода; t0- температура окружающей среды. Если концы трубопровода жестко закреплены, то от температурных воздействий в нем возникают термические напряжения растяжения или сжатия, величина которых определяется по закону Гука
где Е - модуль упругости материала трубы (для стали) E = 2,1·106 кг/см2 =2,1·105 МПа). Эти напряжения вызывают в точках закрепления трубопровода усилия, направленные вдоль оси трубопровода, не зависящие от длины, и равные N = σ · F, где σ — напряжение сжатия и растяжения, возникшее в трубе от изменения температуры; F — площадь живого сечения материала трубы. Величина N может быть очень большой и привести к разрушению трубопровода, арматуры, опор, а также нанести повреждения оборудованию (насосам, фильтрам и т.п.) и резервуарам. Изменения длины подземных трубопроводов зависят не только от колебаний температуры, но и от силы трения трубы о грунт, которая препятствует изменениям длины. Если усилия от термических напряжений не зависят от длины трубопровода, то сила трения трубы о грунт прямо пропорциональна длине трубопровода. Существует такая длина, на которой силы трения могут уравновеситься с термической силой, и трубопровод не будет иметь изменения длины. На участках меньшей длины трубопровод будет передвигаться в грунте.
Предельная длина такого участка 1max, на котором возможно перемещение трубопровода в грунте, определяется по уравнению где δ — толщина стенки трубы, см; k— давление грунта на поверхность трубы, кг/см2; μ— коэффициент трения трубы о грунт. Компенсаторы Разгрузка трубопроводов от термических напряжений осуществляется установкой компенсаторов. Компенсаторы — устройства, позволяющие трубопроводам свободно удлиняться или сокращаться при изменении температуры без повреждения соединений. Применяются линзовые, сальниковые, гнутые компенсаторы. При выборе трассы трубопроводов необходимо стремиться к тому, чтобы температурные удлинения одних участков могли бы восприниматься деформациями других, т.е. стремиться к самокомпенсации трубопровода, используя для этого все его повороты и изгибы. Линзовые компенсаторы (рис. 5.5) применяются для компенсации удлинений трубопроводов с рабочим давлением до 0,6 МПа при диаметре от 150 до 1 200 мм. Рис. 5.5. Компенсаторы линзовые с двумя фланцами
Компенсаторы изготавливают из конических тарелок (штампованных), каждая пара сваренных между собой тарелок образует волну. Количество волн в компенсаторе делают не более 12 во избежание продольного изгиба. Компенсирующая способность линзовых компенсаторов составляет до 350 мм.
Сальниковые компенсатора устанавливаются на трубопроводе с точной укладкой, так как возможные перекосы могут привести к заеданию стакана и разрушения компенсатора. Сальниковые компенсаторы ненадежны в отношение герметичности, требуют постоянного надзора за уплотнением сальников и в связи с этим имеют ограниченное применение. Эти компенсаторы устанавливаются на трубопроводах диаметром от 100 мм и выше для негорючих жидкостей и на паропроводах. Гнутые компенсаторы имеют П-образную (рис. 5.7), лирообразную, S-образную и другие формы и изготавливаются на месте монтажа из тех труб, из которых собирается трубопровод. Эти компенсаторы пригодны для любых давлений, уравновешены и герметичны. Недостатками их являются значительные габариты.
ОПОРЫ ТРУБОПРОВОДОВ Существуют свободные и неподвижные («мертвые» или анкерные) опоры трубопроводов. Неподвижные опоры устанавливают в тех местах, где необходимо закрепить трубопровод в определенном положении (в местах ответвлений, между компенсаторами, перед присоединением к оборудованию и т.д.). Свободные опоры не ограничивают перемещения труба провода в осевом и поперечном направлениях. Выполняются они катковыми и скользящими.Скользящие опоры имеют гладкую поверхность; они просты по конструкции и получили широкое распространение. Катковые опоры более сложны и применяются реже, в более ответственных случаях. Рассчитываются свободные опоры по вертикальной и горизонтальной нагрузкам. Вертикальная нагрузка Q складывается из веса трубопровода, арматуры, изоляции, снега, льда и веса воды, заполняющей трубопровод (при испытании). Расчетная нагрузка на промежуточную опору равна Q=k · q · l, где k = 1,2 - коэффициент перегрузки; q - суммарная нагрузка на погонный метр трубы, кг/м; l - расстояние между опорам трубопровода, м. Ветровая нагрузка, передаваемая пучком горизонтально расположенных трубопроводов на опору (рис. 6.2), определяете' по формуле
Рис. 6.2. схема загружения поперечного сечения опоры. Двухъярусная опора для девяти паро- и газопроводов.
где рв - скоростной напор ветра, кг/м2; D - диаметр трубопровода, наибольшего в пучке, с учетом изоляции, м.
Горизонтальные усилия, действующие на опору вдоль оси трубопровода, подразделяются на: а) силы трения, возникающие между трубопроводом и опорой; б) распоры компенсаторов; в) силы, появляющиеся вследствие давления на заглушку или закрытую задвижку (эти усилия не учитываются в случае применения гнутых компенсаторов). Для промежуточных опор со скользящими или Катковыми опорными устройствами расчетное горизонтальное усилие вдоль оси трубопровода определяется по формуле (силы трения) N = μ · Q, где μ- коэффициент трения; при скользящих опорах μ = 0,3 - при трении стали о сталь и стали о чугун; μ. = 0,6 – при трении стали о бетон; при Катковых опорах Распор (подразделяется на распор за счет температурных деформаций и за счет внутреннего давления) линзовых компенсаторов определяется по следующим формулам: а) распор за счет температурных деформаций трубопровода, соответствующий максимальной допустимой осадке линзы (сжатию линзы) по формуле где δ - толщина стенки линзы, см; σТ- предел текучести стали, кг/см2; коэффициент б) распор линзового компенсатора за счет внутреннего давления по формуле где р - рабочее давление в трубопроводе, кг/см2; в) суммарный распор линзового компенсатора по формуле РК = Ртемп + Рдавл.
Анкерные опоры подразделяются на разгруженные и неразгруженные (концевые). Расчетные горизонтальные усилия, действующие на разгруженные анкерные опоры при прокладке одного трубопровода, определяются по следующим формулам: а) при отсутствии в смежных пролетах задвижек (рис. 6.3, а, в) горизонтальное усилие определяется как разность усилий, действующих по обе стороны от анкерной опоры, при этом меньшее по величине усилие умножается на коэффициент,0,8; усилие на анкерную опору Н равно
1 - анкерная опора; 2 - П-образный компенсатор; 3 - задвижка; 4 - линзовый компенсатор Ррасч = (P1 + N1) – 0,8(P2 + N2) где Р1, Р2, N1 и N2 - соответственно температурные распоры компенсаторов и силы трения на опорах слева и справа от опоры Н; б) если в одном из смежных пролетов имеется задвижка (рис. 6.3 б, г), то усилие на опору Н равно Ррасч = Р1 + N1 – 0,8N2 (для схемы на рис. 6.3, б); Ррасч = Р1 + N1 – 0,8N2 + При определении горизонтальных усилий, действующих на концевые анкерные опоры, в расчет вводятся усилия с одной стороны от опоры. Размеры опорных поверхностей определяются по следующим данным: - рабочая поверхность скользящей опоры, см2: где σсм- длина катка катковой опоры, см где σсм— допустимое давление на смятие. Величина его принимается для скользящих стальных опор [σсм] < 100 кг/см2 и для роликовых опор [σсм] < 50 кг/см2. Конструкции и размеры неподвижных опор чрезвычайно разнообразны и зависят от способа прокладки трубопровода и величины силы, действующей на опору. Длина допускаемого пролета трубопровода из условия прочности определяется по формуле где l - допускаемый пролет, м; R - расчетное сопротивление Ри — испытательное давление в трубопроводе, кг/см; D — средний диаметр трубопровода, см; W — момент сопротивления трубы, см3; т — коэффициент условий работы (m ≡ 0,8); q — суммарная нагрузка на погонный метр трубы, кг/м. Из условия допустимого прогиба где Е – модуль упругости; j = Тонкостенные трубопроводы большого диаметра должны дополнительно проверяться на устойчивость поперечного сечения от внешней нагрузки σсж ≥ 30,8 · 104 · где σ сж — максимальное продольное сжимающее напряжение, возникающее в трубопроводе вследствие изгиба.
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|