Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Общая классификация задач оптимального программирования.




Экономико-математическая модель (ЭММ). Понятие, пример, общая классификация ЭММ.

В основе всех совр.фин.расчетов лежат те или иные мат.модели исследуемых эк.процессов, т.е. основным методом является метод моделирования. Этот метод основан на принципе аналогии, т.е. возможности изучения не самого исходного объекта, а некоторого искусственного созданного объекта – модели. Модель вообще это некоторый объект способный заменить исследуемый с целью получения нового знания. Модели подразделяются на физические и абстрактные. Физические это макеты, конструкции и т.д. Абстрактные это словесно-описательные и мат.модели. Словесно-описательные это эк.сценарии, программы, пояснительные записки. ЭММ это мат.образ, мат.описание принципиальных сторон исследуемого эк.процесса, проблемы, задачи. ЭММ средствами экономики и мат-ки отражает существо исследуемой эк.проблемы. ЭММетоды это методы разработки, исследования и принятия решений по ЭММ. ЭММ подразделяют на макро- и микроэкономические, прескриптивные и дескриптивные. К макро относят модели, реализующие народно-хозяйственные пропорции, межотраслевые и межрегиональные пропорции и эк.взаимоотношения. К микро - модели на уровне взаимоотношений хозяйствующего субъекта, модели внутри фирменного планирования. Прескриптивные (нормативные) это модели отвечают на вопрос: Какой вариант управленческого поведения лучше? (оптимизационные модели). Дескриптивные это модели отвечают на вопрос: А что будет, если? (балансовые модели, производственные функции). Многим задачам в экономике отвечают оптимизационные (экстремальные) ЭММ.

 

Основные этапы применения математических методов в финансово-экономических расчетах (иллюстрация на конкретном примере).

В процессе решения эк.задач с применением мат.методов можно выделить 4 осн.этапа: 1.Постановка эк.задачи, проблемы. Здесь осуществляется описание экономико-организационной задачи. 2.Мат.моделирование. Здесь разрабатывается ЭММ задачи. 3.Получение решения по модели. Здесь осуществляется реализация ЭММ. 4.Внедрение полученного решения. Разработка рекомендаций, предложений в доступном и наглядном виде для работника. В процессе исследований и принятия решений с помощью ЭММ приходится возвращаться заново на те или иные этапы.

 

3.Принцип оптимальности в планировании и управлении, его математическая запись.

Суть принципа оптимальности состоит в стремлении выбрать такое управленческое решение, которое наилучшим образом учитывало бы внутренние возможности и внешние условия производственной деятельности хозяйствующего субъекта. Слова «наилучшим образом» в принципе оптимальности на практике означают – выбор некоторого экономического показателя, позволяющего сравнивать, оценивать эффективность управленческих решений Х, т.е. выбрать критерий оптимальности. Критерии оптимальности: минимум себестоимости продукции, максимум прибыли от реализации, максимум рентабельности и др. Слова «учитывало бы внутренние возможности и внешние условия» на практике означают, что на выбор управленческого решения Х накладывается ряд ограничений, т.е. выбор Х осуществляется из некоторой области допустимых решений D. Реализовать на практике принцип оптимальности это значит разработать и получить решение по модели: максимизировать или минимизировать

функцию f(x) при ограничениях, где f(x1,x2,…,xn) – математическая запись критерия оптимальности –ЦФ оптимизационной модели.

Max(min) f(x1,x2,…,xn)

g1(x1,x2,…xn) {≤, =, ≥ } b1

g2(x1,x2,…xn) {≤, =, ≥ } b2

gn(x1,x2,…xn) {≤, =, ≥ } bn

xi ≥ 0, i=1,¯ n

 

Общая запись оптимизационной ЭММ (задача оптимального программирования). Основные элементы и понятия.

Реализовать на практике принцип оптимальности это значит разработать и получить решение по модели: max(min) максимизировать или минимизировать функцию f(x) при ограничениях, где f(x1,x2,…,xn) – математическая запись критерия оптимальности -ЦФ. Max(min) f(x)=f(x1,x2,…,xn),x є D.

Обычно, приведенную модель записывают в виде:

Max(min) f(x1,x2,…,xn)

g1(x1,x2,…xn) {≤, =, ≥ } b1 (1)

g2(x1,x2,…xn) {≤, =, ≥ } b2 (2)

gn(x1,x2,…xn) {≤, =, ≥ } bn

xi ≥ 0, i=1,¯ n (3)

Общая классификация задач оптимального программирования.

1.По характеру взаимосвязи между переменными: а) линейные, т.е. все функциональные связи в системе ограничений и функции цели – это линейные функции, б) нелинейные, т.е. наличие нелинейности в хотя бы одном из упомянутых элементов.

2.По характеру изменения переменных: а) непрерывные, т.е. значения каждой из управляющих переменных могут заполнять сплошь некоторую область, б) дискретные, т.е. все или хотя бы одна переменная могут принимать некоторые целочисленные значения.

3.По учету факторов времени: а) статистические. Моделирование и принятие решений осуществляются в предположении о независимости от времени элементов модели в течении периода времени, на который принимается управленческое решение, б) динамические. Такое предположение принято не может быть.

4.По наличию информации о переменных: а) задачи в условиях полной определенности (детерминированные), задачи в условиях неполной информации (случай риска). Отдельные элементы являются вероятностными величинами, однако дополнительными статистическими исследованиями могут быть установлены их законы распределения вероятностей, в) задачи в условиях неопределенности. Можно сделать предположение о возможных исходах случайных элементов, но нет возможности сделать вывод о вероятности исходов.

5.По числу критериев оценки альтернатив: а) простые (однокритериальные), где экономически приемлемо использование одного критерия оптимальности или удается специальными процедурами свести многокритериальный поиск к однокритериальному, б) сложные (многокритериальные), т.е. выбор управленческого решения по нескольким показателям.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...