Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Материальный баланс процесса ректификации




ВВЕДЕНИЕ

 

Процесс ректификации находит широкое применение во многих отраслях химической, пищевой, и нефтеперерабатывающей промышленности. Для проведения ректификационного процесса применяют колонные аппараты различного типа, отличающиеся один от другого способом контакта фаз и видом контактного устройства.

Целью расчета ректификационной установки является определение основных размеров колонны, ее гидравлического сопротивления, поверхности теплообменников, материальных потоков и затрат тепла.


НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРОЕКТИРУЕМОГО ОБЪЕКТА

 

Колонные аппараты предназначены для проведения процессов тепло- и массообмена: ректификации, дистилляции, абсорбции, десорбции. Корпуса стандартизованных колонных аппаратов изготавливаются в двух исполнениях:

Ø Корпус, собираемый из отдельных царг с фланцевыми соединениями, рассчитан на давление 1,6 МПа.

Ø Корпус цельносварной, рассчитанный на давление до 4 МПа, имеют колонные аппараты диаметром более 1000мм с интервалом изменения диаметра через 200мм. Расстояния между тарелками в зависимости от типов могут изменяться от 300 до 1000мм.

До настоящего времени не выработано обобщенных и достаточно объективных критериев выбора типа тарелки для ведения того или иного процесса. Существенную роль в этом играют сложившиеся в организациях – поставщиках традиции, опирающиеся на многолетний опыт надежной эксплуатации разрабатываемой ими массообменной аппаратуры.

Тарелки с капсульными колпачками получили наиболее широкое распространение, благодаря своей универсальности и высокой эксплуатационной надежности, они достаточно эффективны, но металлоемки и сложны в монтаже.

Тарелки, собираемые из S – образных элементов, устанавливаются преимущественно в колоннах больших диаметров. Их производительность на 20-30% выше, чем у капсульных.

Клапанные тарелки, по сравнению с колпачковыми, имеют более высокую эффективность и на 20-40% большую производительность. Они применяются для обработки жидкостей, не склонных к смолообразованию и полимеризации, во избежание прилипания клапана к тарелке.

Ситчатые тарелки имеют достаточную высокую эффективность, низкое сопротивление и малую металлоемкость. Они применяются преимущественно в колоннах для обработки чистых жидкостей при атмосферном давлении и вакууме.

Решетчатые тарелки провального типа имеют производительность в 1,5 – 2 раза большую, чем колпачковые тарелки, низкую металлоемкость. Их эффективность достаточно высока, но в узком диапазоне рабочих скоростей. Эти тарелки рекомендуется применять при больших нагрузках колонны по жидкости.

Способы выражения составов фаз

При расчете процессов ректификации составы жидкостей обычно задаются в массовых долях или в процентах, а для практического расчета удобнее пользоваться составами жидкостей и пара, выраженными в мольных долях или процентах.

Для дальнейших расчётов необходимо концентрации исходной смеси, дистиллята и кубового остатка выразить в мольных долях:

 

(II.1.1)

 

где хА – мольная доля компонента А в жидкой фазе;

- массовая доля компонента А;

МА, МВ – молекулярные массы компонентов А и В: молекулярная масса ацетона – 58кг/кмоль, этилового спирта – 46кг/кмоль.



Материальный баланс процесса ректификации

 

Материальный баланс, основанный на законе сохранения массы вещества, составляется для определения количества материальных потоков в колонне.

Материальный баланс для всей колонны

 

(II.2.1)

 

где GF – массовый расход исходной смеси, кг/с; GD – массовый расход дистиллята, кг/с;

 

Материальный баланс по кубовому остатку

 

(II.2.2)

 

где GW – массовый расход кубовой жидкости, кг/с;

 

Из номограммы [2, с.565] следует, что при заданном давлении (760мм.рт.ст.) температура кипения ацетона равна 560С, этилового спирта – 830С.

В этом интервале выбирается произвольный ряд температур: 60, 64, 68, 70, 74, 78, 80. При этих температурах по номограмме [2, с.565] определяются давления паров ацетона и этилового спирта.

Для вычисления равновесных составов фаз используются законы Дальтона и Рауля.

Мольная доля низкокипящего компонента Х в жидкости определяется по уравнению

 

(II.2.3)

 

Мольная доля низкокипящего компонента в паре у* рассчитывается по уравнению

 

(II.2.4)

 

где РА , РВ – давления насыщенных паров низкокипящего и высококипящего компонентов соответственно, мм.рт.ст.; П – общее давление в системе, мм.рт.ст.

Данные по расчету равновесного состава фаз сведены в таблицу 1.

 

Таблица 1. Равновесные составы жидкости и пар смеси ацетон – этиловый спирт при давлении 760 мм.рт.ст.

t, 0С Ра, мм.рт.ст. Рэ, мм.рт.ст. П, мм.рт.ст.
           
        0,785 0,91
        0,613 0,81
        0,478 0,698
        0,405 0,639
        0,244 0,433
        0,112 0,228
        0,061 0,135
           

По полученным данным о равновесии между жидкостью и паром строим изобары температур кипения и конденсации смеси на диаграмме t=f(x,y) (рисунок 1) и линию равновесия на диаграмме у=f(x) (рисунок 2).


Расчет флегмового числа

 

Минимальное флегмовое число можно рассчитать по формуле

 

(II.3.1)

где - мольная доля низкокипящего компонента в паре, равновесном с исходной смесью, определяется по диаграмме х-у (рисунок 2).

Для нашего случая Отсюда

 

 

Оптимальное флегмовое число найдем из условия получения минимального объема колонны, пропорционального произведению nT(R+1), где nT - число ступеней изменения концентрации (теоретическое число тарелок).

Расчет оптимального флегмового числа выполняем следующим образом:

а) задаемся рядом коэффициента избытка флегмы β в пределах от 1,1 до 5,0; определяем рабочее флегмовое число и величину отрезка ;

б) откладываем отрезок В на оси ординат и проводим линии рабочих концентраций верхней и нижней частей колонны;

в) между равновесной и рабочими линиями в пределах концентраций xW и xD строим ступени, каждая из которых соответствует теоретической тарелке;

г) при каждом значении β определяем число теоретических тарелок nT и величину произведения nT(R+1).Результаты расчета сводим в таблицу 2.

Таблица 2 – Данные для расчета оптимального флегмового числа

β R B nT nT·(R+1)
1,1 2,464 0,241   55,424
1,75 3,92 0,17   59,04
  4,48 0,15   60,28
2,8 6,272 0,11   65,448
3,6 8,064 0,092   72,512

д) по данным таблицы 2 строим график зависимости nT(R+1)=f(R) (рисунок 3) и находим минимальное значение величины nT(R+1). Ему соответствует флегмовое число R=2,5.

Эту величину и принимаем в дальнейших расчетах за оптимальное рабочее число флегмы. Число ступеней изменения концентраций при этом равно 16.


Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...