I .3. Распространенность в природе
Уссурийский Государственный Педагогический Институт Биолого-химический факультет Курсовая работа Пятая побочная подгруппа Переодической системы элементов Д.И. Менделеева Выполнила: студентка 2 курса 521 группы Савенко О.В._________
Научный руководитель: Ст. преподаватель Карпенко Н.Н._________ Уссурийск, 2001 г. Глава I. Ванадий………………………………………… I.1. История открытия элемента………………………………………………… I.2. Характеристика элемента……………………………………………..…. I.3. Распространенность в природе…………………………………………. I.4. Химические свойства ванадия……………………………………………. I.5. Оксиды ванадия……………………………………………………………. I.6. Ванадиевые кислоты, основания и соли………………………………… I.7. Органические соединения ванадия……………………………………… I.8. Потенциальная опасность для здоровья………………………………… I.9. Физиологическое значение…………………………………………. I.10. Области применения ванадия…………………………………………….. Глава II. Характеристика элементов ниобия и тантала………………………………………………………………….. II.1. История открытия элементов………………………………… Глава III. Ниобий………………………………………………….. III.1. Ниобий в свободном состоянии……………………………………… III.2. Химические свойства ниобия…………………………………………. III.3. Оксиды ниобия, кислоты и их соли………………………………….. III.4. Соединения ниобия……………………………………………………. Глава IV. Тантал………………………………………………………… IV.1. Тантал в свободном состоянии…………………………………………. IV.2. Химические свойства тантала……………………………………………. IV.3. Химия танталовых соединений…………………………………………….
IV.4. Применение тантала и ниобия……………………………………………… Глава V. Нильсборий………………………………………………… Литература………………………………………………………… Глава I. Ванадий
I.1 История открытия элемента Ванадий назван в честь богини красоты древних скандинавов — легендарной Фреи Ванадис. Это имя элементу дал в 1831 г. Гавриил Сефстрем, профессор Горного института в Стокгольме, Он выделил элемент из шлака, получающегося при плавке руды в доменных печах. Работу Г. Сефстрем осуществил вместе со своим учеником Иоганном Якобом Берцелиусом. Объективность требует сказать, что до Г. Сефстрема этот элемент уже был выделен, и даже не один, а два раза. В 1801 г. мексиканский минералог Андрес Мигуэль дель Рио обнаружил в бурой свинцовой руде не встречавшийся прежде элемент и назвал его «эритронием». Однако он усомнился в своих выводах и решил, что имеет дело с недавно открытым хромом, поэтому не обнародовал своей находки. Чуть раньше Г. Сефстрема к открытию этого элемента подошел Фридрих Вёлер, тот самый, с именем которого связывают первый в истории синтез органического вещества в лаборатории. Ф. Вёлер исследовал привезенные из Мексики руды (с которыми имел дело и Дель Рио) и обнаружил в них нечто необычное, но тут он некстати заболел, а когда возобновил работу и определил, что имеет дело с новым элементом, то было уже поздно — Г. Сефстрем к этому времени опубликовал известие о своем открытии. Таким образом, честь открытия ванадия оставалась за Г. Сефстремом. Ф. Велер же, «прозевавший» ванадий, так написал другу о своей неудаче: «Я был настоящим ослом, проглядев новый элемент в бурой свинцовой руде, и прав был Берцелиус, когда он не без иронии смеялся над тем, как неудачно и слабо, без упорства, стучался я в дом богини Ванадис». Однако на самом деле Сефстрем выделил из шлака не чистый металл, а твердые и жаростойкие его соединения — карбиды ванадия. Он получил порошок черного цвета, а в чистом виде ванадий — ковкий металл светло серого цвета. Но это выяснилось лишь после 1667 г. (т. е. более тридцати лет спустя после открытия Г. Сефстрема), когда ванадий и его соединения как следует изучили Генри Энфильд Роско и Эдуард Горне. В 1869 г. Г. Роско удалось впервые получить ванадий 96-процентной чистоты. Металл оказался хрупким и твердым, но только, что несколькими строчками выше говорилось, что ванадий — ковкий, а не хрупкий. Противоречия здесь нет. По мере
I.2. Характеристика элемента Ванадий считают как бы связующим между элементами первой и побочной подгрупп V группы. Его химия напоминает химию подгруппы азота тем, что в степени окисления +5 ванадию соответствует кислота НVО3, гораздо более устойчивая, чем кислоты сурьмы и висмута — членов главной подгруппы. В то же время этот элемент образует простое вещество, которое, подобно другим членам побочной подгруппы, является типичным устойчивым тугоплавким металлом. По количеству степеней окисления ванадий напоминает азот. Ни у кого из его аналогов (ни у ниобия, ни у тантала) нет такого количества степеней окисления, как у ванадия. Точно известны четыре его состояния: +2, +3, +4 и +5. У азота есть еще два других: +1 и -3. Относительно недавно появилось сообщение о том, что при содержании кислорода 14,5—15,5 % происходит образование σ-фазы, близкой по составу к V2O. Наличие степени окисления +4 и +1 подтверждается органическими производными ванадия. Что же касается соединений с водородом, когда формально степень окисления соответствует -3, то ванадий обладает способностью растворять водород и при этом образовывать с ним гидрид. По стабильности валентные состояния ванадия неравноценны. В обычных условиях самым устойчивым состоянием будет +4. В это состояние он может быть переведен из +3 даже молекулярным кислородом, а из +5 восстановлен мягкими восстановителями. На этом основана, кстати сказать, ванадатометрия -определение при помощи соединений ванадия присутствия, например, ионов Fe2+, Os4+, Mo+5.
I.3. Распространенность в природе На его долю приходится пять из каждых ста тысяч атомов земной коры. Однако число богатых месторождений невелико. Первое из них было обнаружено в 1902г. в Испании - ванадий сопутствовал свинцу. Исключительной по своему содержанию является руда, добываемая на высоте 4700 м в Перу: она состоит из сульфида ванадия – V2S5. При обжиге получается одновременно два нужных экономике продукта: оксид серы (IV), необходимый для получения серной кислоты, и ванадий - для оборонной промышленности. Ведь ванадий - стратегическое сырье, без него не обходится производство специальных сортов стали. Всего известно более 65 минералов, включающих ванадий. Интересной особенностью распространения этого элемента является его содержание в ископаемых растительного происхождения: углях, нефти, горючих сланцах и др. Вода морей содержит 0,3 г ванадия на 1000 т, и некоторые обитатели морей (морские ежи, голотурии) включают его в состав своего организма. Долгое время не получали чистый ванадий, а когда это произошло, то оказалось, что свойства даже 96% ванадия резко отличаются от свойств 100 %. Это металл серебристо-серого цвета, ковкий и пластичный. При температуре, близкой к абсолютному нулю (4,3 К), обладает сверхпроводимостью. Однако даже небольшие примеси кислорода, азота или водорода делают металл твердым и хрупким, как бы переводя его из типичного металла в нетипичный. В таком изменении свойств есть своя логика: по мере того как он все более насыщается кислородом и переходит от VO к V2O5, его металлический характер меняется на неметаллический. Процесс получения чистого ванадия довольно сложный. Сначала стремятся получить его оксид (V2O5 или V2O3) или галогенид (VС13 или VI3), а затем применяют либо металлотермию: V2O5 + 5Ca = 5CaO+2V; 2VCl3 + 3Mg== 3MgCl2+2V, либо восстановление углем в вакууме: V2О3 + 3C = 3CO+2V, либо термическую диссоциацию в вакууме на горячей проволоке: 2VI3 = 2V+3I2 Последним способом получают металл высокой чистоты. I.3.1. Источники Основным источником поступления ванадия в подземные воды являются железные и полиметаллические руды, содержащие небольшую примесь ванадия, а также экологические факторы: сточные воды предприятий черной и цветной металлургии, добыча и переработка нефти, сжигание углеводородного топлива (например, выбросы автомобилей). Ванадий имеет свойство связываться с другими элементами и частицами и поэтому в основном задерживается в почве, где и остается длительное время. В растениях обнаруживаются только незначительные следы ванадия, что свидетельствует о его слабом накоплении в растительных тканях.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|