Классификация коррозионных процессов
⇐ ПредыдущаяСтр 6 из 6 По механизму процесса различают химическую и электрохимическую коррозию металла. Химическая коррозия - это взаимодействие металлов с коррозионной средой, при которомокисляется металл и восстанавливается окислительные компоненты коррозионной среды протекают в одном акте. Так протекает окисление большинства металлов в газовых средах содержащих окислитель (например, окисление в воздухе при повышении температуры) Mg+ O -> MgO 4Al + 3O -> 2AlO Электрохимическая коррозия - это взаимодействие металла с коррозионной средой, при котором ионизация атомов металла и восстановление окислительной компоненты среды происходит не водном акте, и их скорости зависят от электродного потенциала металла. По такому процессу протекают, например, взаимодействие металла с кислотами: Zn + 2HCl -> Zn +2Cl +H эта суммарная реакция состоит из двух актов: Zn -> Zn + 2e 2H + 2e -> H По характеру коррозионного разрушения. Общая или сплошная коррозия при которой корродирует вся поверхность металла. Она соответственно делится на равномерную (1а), не равномерную (1б) и избирательную (1в), при которой коррозионный процесс распространяется преимущественно по какой-либо структурной составляющей сплава. Местная коррозия при которой корродируют определенные участки металла: а) коррозия язвами - коррозионные разрушения в виде отдельных средних и больших пятен (коррозия латуни в морской воде) б) межкристаллическая коррозия при ней процесс коррозии распространяется по границе металл-сплав (алюминий сплавляется с хромоникелем). и другие виды коррозии. По условиям протекания процесса. а) Газовая коррозия - это коррозия в газовой среде при высоких температурах. (жидкий металл, при горячей прокатке, штамповке и др.)
б) Атмосферная коррозия - это коррозия металла в естественной атмосфере или атмосфере цеха (ржавение кровли, коррозия обшивки самолета). в) Жидкостная коррозия - это коррозия в жидких средах: как в растворах электролитов, так и в растворах неэлектролитов. г) Подземная коррозия - это коррозия металла в почве д) Структурная коррозия - коррозия из-за структурной неоднородности металла. е) Микробиологическая коррозия - результат действия бактерий ж) Коррозия внешним током - воздействие внешнего источника тока (анодное или катодное заземление) з) Коррозия блуждающими токами - прохождение тока по непредусмотренным путям по проекту. и) Контактная коррозия - сопряжение разнородных электрохимически металлов в электропроводящей среде. к) Коррозия под напряжением - одновременное воздействие коррозионной среды и механического напряжения. 32) Виды коррозионных разрушений разнообразны. По характеру разрушения различают: §равномерную (поверхностную) коррозию; §местную коррозию; §межкристаллитную (интеркристаллитную) коррозию. Поверхностная коррозия Поверхностная коррозия характеризуется равномерным разрушением металла по всей поверхности. Это наименее опасный вид коррозии, так как можно, зная ее скорость, заранее определить возможный срок службы детали. Местная коррозия Более опасным видом коррозии является местная коррозия. В этом случае разрушение начинается в отдельных участках детали, распространяясь на значительную глубину с поверхности, и степень этого разрушения трудно определить. Межкристаллитная (интеркристаллитная) коррозия Самым опасным видом коррозии является межкристаллитная (интеркристаллитная) коррозия. В этом случае разрушение происходит по границам кристаллов и внешняя поверхность металла не имеет заметных следов коррозии.
Межкристаллитная коррозия может привести к мгновенной поломке деталей в условиях эксплуатации. 33) Основные способы защиты Антикоррозийные способы можно сгруппировать, опираясь на следующие методы: 1. электрохимический метод — позволяет уменьшить разрушительный процесс на основе закона гальваники; 2. уменьшение агрессивной реакции производственной среды; 3. химическое сопротивление металла; 4. защита поверхности металла от неблагоприятного воздействия окружающей среды. Защиту поверхности и гальванический метод применяют уже в момент эксплуатации металлических конструкций и изделий. К ним относятся следующие способы защиты: катодная, протекторная, а также ингибиторная. Электрохимическая защита основана на действии электрического тока, под его постоянным воздействием коррозия прекращается. Внедрение ингибиторов в агрессивную среду, которая соприкасается с металлом, позволяет снизить скорость коррозийных процессов. Лакокрасочное покрытие металлов Краска на сегодняшний день самый доступный и наиболее используемый антикоррозийный материал. Лакокрасочное покрытие создает механический слой, который создает препятствие для воздействия агрессивной среды на металлоконструкцию или изделие. Краска может использоваться как до возникновения ржавчины, так и на этапе коррозии. Во втором случае, перед тем как нанести покрытие, обрабатываемую поверхность нужно подготовить: очистить возникшие коррозийные повреждения, произвести герметизацию трещин, только после этого наносится краска, образуя защитный слой. При помощи этого средства защищают водопроводные трубы, металлические элементы жилых построек — перила, перегородки. Еще один плюс этой защиты — краска может быть различна по цветовой гамме, следовательно, покрытие будет служить еще оформлением. Виды защитных покрытий Все существующие составы для обозначенных целей делятся на несколько типов:
34)
Электрохимические методы защиты. Методы электрохимической защиты основаны на изменении потенциала защищаемого металла и не связаны с изоляцией металла от коррозионной среды. К ним относятся катодная защита, называемая также электрозащитой, и протекторная (или анодная) защита. Катодная защита заключается в том, что защищаемая конструкция А (рисунок 5), находящаяся в среде электролита (например, в почвенной воде), присоединяется к катоду внешнего источника электричества В. Защищаемая конструкция становится катодом. В ту же агрессивную среду помещают кусок старого металла Б (рельс, балка), присоединяемый к аноду внешнего источника электричества. В процессе коррозии этот кусок старого металла становится анодом и разрушается. Протекторная защитаотличается от катодной защиты тем, что для ее осуществления используется специальный анод – протектор, в качестве которого применяют металл более активный, чем металл защищаемой конструкции (алюминий, цинк). Протектор Б (рисунок 6) соединяют с защищаемой конструкцией А проводником электрического тока В. В процессе коррозии протектор служит анодом и разрушается, тем самым предохраняя от разрушения защищаемую конструкцию. Рисунок 5 – Схема катодной Рисунок 6 – Схема анодной
защиты (протекторной) защиты 35) Рациональное конструирование изделий — первый и обязательный этап борьбы с коррозией, на стадии которого учитывают следующие обязательные факторы: 1. Правильный выбор материалов (металлов, сплавов, герметиков, диэлектриков, пропиток и др.) для изделий и конструкций: стойких к данной коррозионной среде, не способных впитывать влагу, не выделяющих корррозионно-активных агентов при старении; 2. Рациональное сочетание и компоновка в одном узле деталей, изготовленных из металлов, отличающихся значениями электродных потенциалов: предотвращение их непосредственного контакта друг с другом и с коррозионной средой путем изоляции соприкасающихся поверхностей, применения различных прокладок, герметиков, чтобы исключить возможность контактной коррозии; 3. Оптимальная форма деталей: с дренажными отверстиями и проветриваемыми полостями, с минимумом коррозионно-опасных участков (углублений, пазов, щелей, канавок, зазоров, застойных зон); 4. Характер соединения элементов в сборке: сварные соединения предпочтительнее клепанных и болтовых, которые ведут к возникновению больших внутренних напряжений и пор; 5. Возможность нанесения и возобновление различных покрытий в процессе эксплуатации изделий и при их ремонте. Легирование (модифицирование) металлических материалов — эффективный процесс повышения их стойкости к воздействию агрессивных сред при обычной и повышенных температурах. Сущность его состоит в том, что материал (металл, сплав), из которого изготавливают изделия, вводят легирующие компоненты, вызывающие его пассивацию. Различают объемное (металлургическое) и поверхностное (ионное) легирование. Объемное легирование применяют в основном тогда, когда другие методы защиты от коррозии для данного материала не приемлемы. Его осуществляют на стадии выплавки конструкционных материалов. Считают, что легирующие компоненты диффундируют из объема на поверхность сплава и вместе с основным металлом окисляются (пассивируются) кислородом воздуха, оразуя устойчивые смешанные оксидные слои (защитные пленки), которые препятствуют дальнейшему проникновению коррозионной среды. Железо, алюминий, титан, магний, кадмий, цинк и их сплавы легируют хромом, никелем, молибденом, медью и др. В результате получают сплавы с более высокой коррозионной стойкостью, чем исходные материалы. Эти сплавы одновременно обладают жаростойкостью и жаропрочностью. Жаростойкость — свойство материалов противостоять химическому разрушению под действием воздуха при высокой температуре. Жаропрочностью — способность конструкционных материалов выдерживать без существенных деформаций механические нагрузки при высоких температурах в инертной среде.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|