Логические законы тождества, двойного отрицания и другие
Закон тожества
Внешне самым простым из логических законов является закон тождества. Он говорит: если высказывание истинно, то оно истинно. Иначе говоря, каждое высказывание вытекает из самого себя и является необходимым и достаточным условием своей истинности. Символически: A? A, если A, то A. Например: «Если дом высокий, то он высокий», «Если трава чёрная, то она чёрная» и т.п. В приложениях закона тождества к конкретному материалу с особой наглядностью обнаруживается отмечавшаяся ранее общая черта всех логических законов. Они представляют собой тавтологии, как бы повторения одного и того же и не несут содержательной, «предметной» информации. Это – общие схемы, отличительная особенность которых в том, что подставляя в них любые конкретные высказывания (как истинные, так и ложные), мы обязательно получим истинное выражение. Закон тождества нередко ошибочно подменяется требованием устойчивости, определённости мышления. Действительно, в процессе рассуждения значения понятий и утверждений не следует изменять. Они должны оставаться тождественными самим себе, иначе свойства одного объекта незаметно окажутся приписанными совершенно другому. Если мы начали говорить, допустим, о спутниках как небесных телах, то слово «спутник» должно, пока мы обсуждаем эту тему, обозначать именно такие тела, а не каких-то иных спутников. Требование не изменять и не подменять значения слов в ходе рассуждения, конечно, справедливо. Но, очевидно, что оно не является законом логики. Точно так же, как не относится к ним совет выделять обсуждаемые объекты по достаточно устойчивым признакам, чтобы уменьшить вероятность подмены в рассуждении одного объекта другим.
Иногда закон тождества неверно истолковывается как один из законов бытия, говорящий о его относительной устойчивости и определённости. Понятый так, он превращается в утверждение, что вещи всегда остаются неизменными, тождественными самим себе. Такое понимание этого закона, конечно, ошибочно. Закон ничего не говорит об изменчивости или неизменности. Он утверждает только, что если вещь меняется, то она меняется, а если она остаётся той же, то она такой же и остаётся.
Закон двойного отрицания
Этим именем называется закон логики, позволяющий отбрасывать двойное отрицание. Этот закон можно сформулировать так: отрицание отрицания даёт утверждение, или: повторенное дважды отрицание даёт утверждение. Например: «Если неверно, что Вселенная не является бесконечной, то она бесконечна». Закон двойного отрицания был известен ещё в античности. В частности, древнегреческие философы Зенон Элейский и Горгий излагали его следующим образом: если из отрицания какого-либо высказывания следует противоречие, то имеет место двойное отрицание исходного высказывания, то есть оно само. В символической форме закон записывается так: ~~ А? A, если неверно, что не-А, то верно А. Другой закон логики, говорящий о возможности не снимать, а вводить два отрицания, принято называть обратным законом двойного отрицания: утверждение влечёт своё двойное отрицание. Например: «Если Шекспир писал сонеты, то неверно, что он не писал сонеты». Символически: A? ~~ A если A, то неверно что не -А. Объединение этих законов даёт так называемый полный закон двойного отрицания: ~~ А? A, неверно, что не- A, если и только если верно А.
ЗАКОНЫ КОНТРАПОЗИЦИИ
Законы контрапозиции говорят о перемене позиций высказываний с помощью отрицания: из условного высказывания «если есть первое, то есть второе» вытекает «если нет второго, то нет и первого», и наоборот.
Символически: (А? В)? ( ~ В? ~ А), если дело обстоит так, что если A, то B, то если не -В, то не- А; ( ~ B? ~ А)? (А? В), если дело обстоит так, что если не- B, то не- A, то если A, то В. К примеру: из высказывания «Если есть следствие, то есть и причина» следует высказывание «Если нет причины, нет и следствия», и из второго высказывания вытекает первое. К законам контрапозиции обычно относят также законы: (А? ~ В)? (В? ~ А), если дело обстоит так, что если A, то не- B, то если B, то не- A Например, «Если квадрат не является треугольником, то треугольник не квадрат»; (~ А? В)? (~ В? А), если верно, что если не- A, то B, то если не- B то A. К примеру: «Если не являющееся очевидным сомнительно, то не являющееся сомнительным очевидно». Контрапозиция подобна рокировке в шахматной игре. И подобно тому, как редкая партия проходит без рокировки, так и редкое наше рассуждение обходится без контрапозиции.
МОДУС ПОНЕНС
Слово «модус» в логике означает разновидность некоторой общей формы рассуждения. «Модус поненс» – термин средневековой логики, обозначающий определённое правило вывода и соответствующий ему логический закон. Правило вывода модус поненс, обычно называемое правилом отделения или гипотетическим силлогизмом, позволяет от утверждения условного высказывания и утверждения его основания (антецедента) перейти к утверждению следствия (консеквента) этого
Здесь «если A, то B» и «A» – посылки, «B» – заключение; горизонтальная черта стоит вместо слова «следовательно». Другая запись: Если A, то B. А. Следовательно, В. Благодаря этому правилу от посылки «если A, то B», используя посылку «A», мы как бы отделяем заключение «B». Например: Если у человека грипп, он болен. У человека грипп. Человек болен. Это правило постоянно используется в наших рассуждениях. Впервые оно было сформулировано, насколько можно судить, учеником Аристотеля Теофрастом ещё в III в. до н.э. Соответствующий правилу отделения логический закон формулируется так: (А? В) & A? B, если верно, что если A, то B, и A, то верно B. Например: «Если при дожде трава растёт быстрее и идёт дождь, то трава растёт быстрее». Рассуждение по правилу модус понёс идёт от утверждения основания истинного условного высказывания к утверждению его следствия. Это логически корректное движение мысли иногда путается со сходным, но логически неправильным её движением от утверждения следствия истинного условного высказывания к утверждению его основания.
Например, правильным является умозаключение: Если висмут – металл, он проводит электрический ток. Висмут – металл. Висмут проводит электрический ток. Но внешне сходное с ним умозаключение: Если висмут – металл, он проводит электрический ток. Висмут проводит электрический ток. Висмут металл. логически некорректно. Рассуждая по последней схеме, можно от истинных посылок прийти к ложному заключению. Например: Если человек собирает марки, он коллекционер. Человек – коллекционер. Человек собирает марки. Далеко не все коллекционеры собирают именно марки; из того, что человек коллекционер, нельзя заключать, что он собирает как раз марки. Истинность посылок не гарантирует истинности заключения. Против смешения правила модус поненс с указанной неправильной схемой предостерегает совет: от подтверждения основания к подтверждению следствия заключать можно, от подтверждения следствия к подтверждению основания – нет.
Модус толленс
Так средневековые логики называли следующую схему рассуждения:
Другая запись: Если A, то B. Не- B. Следовательно, не- A. Эта схема часто называется принципом фальсификации: если из какого-то утверждения вытекает следствие, оказывающееся ложным, это означает, что и само утверждение ложно. Посредством схемы от утверждения условного высказывания и отрицания его следствия осуществляется переход к отрицанию основания данного высказывания. Например: Если гелий – металл, он электропроводен. Гелий неэлектропроводен. Гелий – не металл.
Модус понендо толленс Этим именем средневековые логики обозначали следующие схемы рассуждения:
Другая запись: Либо A, либо В. А. Следовательно, не- B. Либо A, либо В. В. Следовательно, не- А.
Посредством этих схем от утверждения двух взаимоисключающих альтернатив и установления того, какая из них имеет место, осуществляется переход к отрицанию второй альтернативы: либо первое, либо второе, но не оба вместе; есть первое; значит, нет второго. Например: Достоевский родился либо в Москве, либо в Петербурге. Он родился в Москве. Неверно, что Достоевский родился в Петербурге. Дизъюнкция, входящая в данную схему, является исключающей, она означает: истинно первое или истинно второе, но не оба вместе. Такое же рассуждение, но с неисключающей дизъюнкцией (первое или второе, но возможно, что и первое, и второе), логически неправильно. От истинных посылок оно может вести к ложному заключению: На Южном полюсе был Амундсен или был Скотт. На Южном полюсе был Амундсен. Неверно, что там был Скотт. Обе посылки истинны: и Амундсен, и Скотт достигли Южного полюса, заключение же ложно, Правильным является умозаключение: На Южном полюсе первым был Амундсен или Скотт. На этом полюсе первым был Амундсен. Неверно, что там первым был Скотт.
Модус толлендо поненс
Этим термином средневековые логики обозначали разделительно-категорическое умозаключение: первое или второе; не первое; значит, второе. Первая посылка умозаключения – разделительное (дизъюнктивное) высказывание, вторая – категорическое высказывание, отрицающее один из членов дизъюнкции; заключением является другой её член:
Или:
Другая форма записи: A или B. Не- A Следовательно, В. A или B. Не- B. Следовательно, А. Например: Множество является конечным или оно бесконечно. Множество не является конечным. Множество бесконечно. Иногда эту схему рассуждения именуют дизъюнктивным силлогизмом. С использованием логической символики умозаключение формулируется так:
Или:
В современной логике модус толлендо поненс называется также правилом удаления дизъюнкции. Ему соответствует логический закон: (A v B) & ~ A? B, если A или B и ~ A, то В.
Законы де Моргана Широкое применение находят законы, названные именем американского логика А. де Моргана и позволяющие переходить от утверждений с союзом «и» к утверждениям с союзом «или», и наоборот: ~ (A & B)? (~ A v ~ В), если неверно, что есть и первое, и второе, то неверно, что есть первое, или неверно, что есть второе; (~ A v ~ В)? ~ (А & В), если неверно, что есть первое, или неверно, что есть второе, то неверно, что есть первое и второе. Используя эти законы, от высказывания «Неверно, что изучение логики и трудно, и бесполезно» можно перейти к высказыванию «Изучение логики не является трудным, или же оно не бесполезно». Объединение этих двух законов даёт закон (? – эквивалентность, «если и только если»):
~(A & B)? (~ A v ~ B). Словами обычного языка этот закон можно выразить так: отрицание конъюнкции эквивалентно дизъюнкции отрицаний. Например: «Неверно, что завтра будет холодно и завтра будет дождливо, тогда и только тогда, когда завтра не будет холодно или завтра не будет дождливо». Ещё один закон де Моргана утверждает, что отрицание дизъюнкции эквивалентно конъюнкции отрицаний: ~ (A v В)? (~ А & ~ В), неверно, что есть первое или есть второе, если и только если неверно, что есть первое, и неверно, что есть второе. Например: «Неверно, что ученик знает арифметику или знает геометрию, тогда и только тогда, когда он не знает ни арифметики, ни геометрии». На основе законов де Моргана связку «и» можно определить, используя отрицание, через «или», и наоборот: – «A и B» означает «неверно, что не- A или не- B», – «A или B» означает «неверно, что не- A и не -В». К примеру: «Идёт дождь и идёт снег» означает «Неверно, что нет дождя или нет снега»; «Сегодня холодно или сыро» означает «Неверно, что сегодня не холодно и не сыро».
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|