Исследование устойчивости периодического решения
Составим уравнения первого приближения, порождаемое решением (8). Сделаем замену: x = Ф(t) + x; в уравнении (1) при этом отбросим члены, содержащие квадраты и высшие степени x и x'.
Воспользуемся тем фактом, что Ф (t) - решение уравнения. Получим уравнение первого приближения:
Это линейное дифференциальное уравнение с периодическими коэффициентами. Его решение мы будем искать в виде функции времени Удовлетворяют тому же уравнению, что и x, то есть (10). Начальные условия для них определены следующим образом. ; аналогичным образом можно показать, что (11). Представим правую часть уравнения в виде степенного ряда по m.
будем искать в виде: (12). Подставим (12) в (10) и сравнивая коэффициенты при соответствующих степенях m, получим:
Начальные условия для Ао, Во, …. Следует выбрать так, чтобы выполнялись условия (11). Действительно подставляя (11) в (12) и сравнивая коэффициенты при соответствующих степенях m, получим
Для В'о и Во аналогично. Для остальных же как видно из уравнений условия будут нулевые. Итак:
(14)
Решение (13) можно найти при помощи квадратур:
(15)
Если вспомнить общую теорию линейных диффуров с периодическими коэффициентами, то общее решение (10) имеет вид:
S1, S2 - периодические функции с тем же периодом, что и Ф (t). a1, a2 - характеристические показатели. Если все , т.е. колебания затухают, то в этом случае выполняется теорема, доказанная Ляпуновым, относительно того, что периодическое решение уравнения первого приближения вполне устойчиво. Согласно Пуанкаре характеристические показатели можно определить из следующего уравнения:
=0 (16) Полагаем ;
Тогда определитель будет:
Вопрос об устойчивости, как сказано выше, решается знаком Re (a), или что все равно ÷ l÷. Если ÷ l÷ < 1 имеет место устойчивость ÷ l÷ = 1 этот случай для нашей задачи не представляет интереса. ÷ l÷> 1 имеет место неустойчивость. При рассмотрении (18) имеют место 2 случая q > р2; q < р2; В первом случае l-комплексные; ½l2 ½=q; (20) если q<1; устойчивость q>1 - неустойчивость. Случай второй - l - действительные: ; (21) устойчивость соответствует p и q нетрудно получить в виде рядов по степени m из формул (19) (12).
(22) Если принять во внимание (15)
(22a)
(23)
Мы видим, что при достаточно малом m и w¹n; n ' Z вопрос об устойчивости решается величиной q и следовательно знаком b, если b < 0- имеет место устойчивость, b > 0 - неустойчивость. В нашем случае b имеет вид: (23a)
Отыскание периодического решения в области резонанса. Тогда l=mlо; w2 = 1+ aо m, (24) (aо , m - расстройка, реальный физический резонанс наступает при aо ¹ 0). Тогда исследуемое уравнение имеет вид:
(25)
При m = 0 периодическое решение будет иметь вид: (26) Следуя Пуанкаре, мы можем предположить периодическое решение в виде:
(27);
Начальные условия возьмем как и раньше:
Аналогично тому, как мы это делали в предыдущих параграфах. Подставляем (27) в (25) и, сравнивая коэффициенты при b1 b2, m и других интересующих нас величинах, получим уравнение, которым удовлетворяет A, B, C, D, E, F. Начальные условия для этих уравнений определим, если подставим (28) в (27).
(29)
Запишем условия периодичности для (27):
Делим на m:
(30a)
Необходимым условием существования периодического решения является:
Эти уравнения определяют P и Q решения (26), в близости к которому устанавливается периодическое решение. Они могут быть записаны в раскрытой форме:
(31)
Для существования искомого периодического решения достаточно неравенство 0 детерминанта: (см. § 1).
D, Е и их производные найдутся из (29) при помощи формул аналогичных (15). Заметим, что (30) мы можем определить b1, b2, в виде рядов по степеням m. Таким образом, мы можем (27) как и в § 1 представить в виде ряда.
(33)
P,Q-определяются формулами (31) (32).
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|