Исследование устойчивости периодических решений в области резонанса
⇐ ПредыдущаяСтр 3 из 3
Аналогично тому, как мы это делали в § 2, составим уравнение первого приближения, порожденное решением (33).
Решение опять будем искать в виде . Однако нет необходимости проделывать все выкладки заново. Воспользуемся результатами § 2, приняв: Из формул (22) (34), тогда D - тот же Якобиан, что и (32). Распишем его:
(36)
; Тогда, зная функцию f, мы можем вычислить D в виде функции P, Q и aо. Заметим, что равенство (23 а) в нашем случае имеет вид:
; (37)
Опираясь на результаты исследования, полученных в § 2, нужно рассмотреть при исследовании устойчивости два случая: (при достаточно малых m)
1) p2 - q < 0 2) p2 - q > 0 В первом случае устойчивость характеризуется условием q < 1 или, что то же самое b < 0. Во втором случае (*) последнее может быть выполнено только, если b < 0, а D > 0. Нетрудно видеть, что необходимым достаточным условием в обоих случаях является b < 0, D > 0. (Это можно получить из неравенства (*)). Применение общих формул, полученных в предыдущих параграфах, к теории захватывания в регенеративном приемнике для случая, когда характеристика - кубическая парабола. Мы рассмотрим простой регенеративный приемник с колебательным контуром в цепи сетки, на который действует внешняя сила Ро sin w1 t. Дифференциальное уравнение колебаний данного контура следующее: (39) Считая, что анодный ток зависит только от сеточного напряжения, а также, что характеристикой является кубическая парабола: (40) S-крутизна характеристики, К - напряжение насыщения . Далее, вводя обозначения: Получим дифференциальное уравнение для х: (41)
А: (случай далекий от резонанса). Для него применяем результаты § 1, полагая .
Исходное решение в не посредственной близости, к которому устанавливается искомое решение следующее: Если w > 1, т.е. wо > w1, то разность фаз равна 0, если w < 1, то разность фаз равна p. В этом отношении все происходит в первом приближении также, как и при обычном линейном резонансе. Устойчивость определяется знаком b (b < 0).
(42). Т.е. те решения, для которых выполняется это условие, устойчивы.
В: (область резонанса, § 3, 4). В качестве исходного периодического решения, в непосредственной близости к которому устанавливается искомое, будет решение следующего вида: x = P sin t + Q cos t (P, Q - const). Запишем уравнение, определяющее эти P и Q, т.е. соотношение (31) для нашего случая.
Или преобразовав их, получим следующее:
Полагая Р = R sin j; Q = R cos j. Далее найдем для амплитуды R и фазы j для того исходного периодического решения, в близости к которому устанавливается рассматриваемое периодическое решение, соотношения связывающие их:
Первая формула дает "резонансную поверхность" для амплитуды. Вторая - для фазы. По (38) условия устойчивости имеют вид b < 0, D > 0. Считаем b и D через формулы (35-37). (46)
Т.е. решение является устойчивым, если удовлетворяется условие (**). В заключение выпишем формулы для вычисления aо, соответствующего ширине захватывания для рассматриваемого случая.
1) a0 - является общим корнем уравнений
2)
Сама ширина Dw, отсчитанная от одной границы захватывания до другой выражается следующим образом: Dw = aо w2о (MS - c r). Можно дать простые формулы для вычисления ширины захватывания в следующих случаях: а) l2о << 1; Dw = wо Ро/Vоg. б) для очень сильных сигналов (Vоg - амплитуда сеточного напряжения при отсутствии внешней силы).
Список литературы 1. Андронов А.А. Собрание трудов, издательство "Академии наук СССР", 1956. 2. Андронов А.А., Витт А. К теории захватывания Ван дер Поля.. Собрание трудов, издательство "Академии наук СССР", 1956.
3. Ляпунов А. Общая задача об устойчивости движения, Харьков, 1892.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|