Процедуры мультиплексирования внутри иерархии SDH.
Наиболее важными потоками иерархии SDH являются потоки STM-1, STM-4 и STM-16. Рассмотрим процедуры мультиплексирования между этими уровнями, схематически представленные на рис.4.6. Рис. 4.6. Синхронное мультиплексирование внутри иерархии SDH. Как следует из рисунка, внутри иерархии SDH мультиплексирование выполняется синхронно, без процедуры выравнивания скоростей. В результате обеспечивается основное преимущество концепции SDH как технологии построения цифровой первичной сети - возможность загрузки и выгрузки потоков любого уровня иерархии PDH из любого потока иерархии SDH вне зависимости от скорости передачи. Для удобства реализации синхронного мультиплексирования с использованием современных логических устройств, мультиплексирование выполняется байт-синхронно в отличие от бит-ориентированных процедур, используемых в иерархии PDH. В результате использования байт-ориентированных процедур мультиплексирования значительно повышается производительность процессоров, в результате достигается высокая скорость передачи в первичной сети. Использование в концепции SDH байт-синхронного мультиплексирования позволило также увязать динамику развития пропускной способности в цифровых системах передачи с динамикой развития производительности современных процессоров, что было важно, поскольку на этапе технологии PDH наметилось некоторое отставание. Рассмотрим теперь структуру заголовка маршрута и секционного заголовка и те информационные поля, которые входят в их состав. Структура заголовка POH. Заголовок маршрута РОН выполняет функции контроля параметров качества передачи контейнера. Он сопровождает контейнер по маршруту следования от точки формирования до точки расформирования. Структура и размер заголовка РОН определяются типом соответствующего контейнера. Следовательно, различаются два основных типа заголовков:
Рассмотрим подробно структуру заголовка маршрута высокого уровня. Структура заголовка НО-РОН представлена на табл.4.2.
Тавлица 4.2. Структура заголовка HO - POH. Поле идентификатора маршрута (J1) передается в 16-ти последовательных циклах и состоит из 15-байтовой последовательности идентификаторов маршрута и 1 байта суммы CRC-7 для идентификации ошибок в трассе маршрута. Идентификаторы маршрута представляют собой последовательность ASCII-символов в формате, соответствующем ITU-T E.164, и используются для того, чтобы принимаемый терминал получал подтверждение о связи с определенным передатчиком (идентификация точки доступа к маршруту). Структура J1 схематически представлена на табл.4.3.
Таблица 4.3. Структура информационного поля J1 с цикловой структурой. Рассмотрим основные информационные поля в составе НО-РОН.
Таблица 4.4. Значения указателя типа полезной нагрузки. Байт G1 служит для передачи сигналов подтверждения ошибок передачи, обнаруженных в конце маршрута. Предусмотрено использование байта G1 для передачи данных об ошибках двух категорий (рис.4.7.) Рис. 4.7. Значения байта G1. Байты F2 и F3 используются оператором для решения внутренних задач обслуживания системы передачи и образуют выделенный служебный канал.
Структура заголовка SOH. Рассмотрим более подробно состав заголовка SOH (рис.4.8). Рис. 4.8. Структура заголовка SOH. Как видно из рисунка, информация о цикловой синхронизации (А1, А2) повторяется три раза, что связано с объединением стандартов SDH и SONET.
Рис.4.9. Структура канала управления F1. Байт S1 определяет параметр качества источника синхронизации узла генерации транспортного модуля. Информация о параметре качества источника синхронизации передается комбинацией битов 5-8 в составе байта S1. Возможные значения параметров качества источника синхронизации приведены в табл.4.5. Передача информации о качестве источника синхронизации позволяет избежать проблем, связанных с нарушениями в структуре системы синхронизации. Учитывая, что система передачи на основе SDH использует принципы синхронной передачи и мультиплексирования, параметры синхронизации в SDH чрезвычайно важны. С увеличением разветвленности сети, использованием концепций резервирования и самозалечивающихся сетей, повышается вероятность возникновения проблем, связанных с системой синхронизации. Так, например, в процессе реконфигурации или гибкого переключения на резерв, система синхронизации должна также реконфигурироваться. Передача информации о качестве источника синхронизации конкретного узла дает возможность авторегулирования процессов в системе синхронизации, например, сигнал от источника плохого качества не используется для распределения по сети и синхронизации от него других узлов.
Таблица 4.5. Возможные значения параметра источника синхронизации. Назначение указателей. Указатели выполняют в технологии SDH две основные функции: Первая функция указателей является наиболее важной, поскольку именно с ней связано основное преимущество технологии SDH - отсутствие необходимости пошагового мультиплексирования/ демультиплексирования. Указатели административных блоков AD PTR и блоков нагрузки TU PTR обеспечивают прямой доступ к загруженному в синхронный транспортный модуль потоку на любом уровне (рис.4.10). Как видно из рис.4.10, в системах передачи SDH используются два типа указателей - административной (AU-PRT) и трибутарной групп (TU-PTR). Указатели образуются байтами Н, описанными в предыдущем разделе.
Механизм формирования указателей - обратный к механизму поиска нагрузки, представленной на рис.4.10. Схематически его можно представить рис.4.11. Рис.4.11. Структура присвоения/поиска, формирование сигнала SDH.
В системе SDH используется метод контроля параметров ошибки без отключения канала, который получил название метода контроля четности (Bit Interleaved Parity - В1Р). Этот метод, также как и CRC, является оценочным, но он дает хорошие результаты при анализе систем передачи SDH. Алгоритм контроля четности достаточно прост (рис.5.1). Контроль четности выполняется для конкретного блока данных цикла в пределах групп данных по 2, 8 и 24 бита (BIP-2, BIP-8 и В1Р-24 соответственно). Эти группы данных организуются в столбцы, затем для каждого столбца рассчитывается его четность, т.е. четное или нечетное количество единиц в столбце. Результат подсчета передается в виде кодового слова на приемную сторону. На приемной стороне делается аналогичный расчет, сравнивается с результатом и делается вывод о количестве ошибок четности. Результат сравнения передается в направлении, обратном передаче потока. Рис.5.1. Алгоритм контроля чётности. Метод контроля четности является оценочным, поскольку несколько ошибок могут компенс ровать друг друга в смысле контроля четности, однако этот метод дает приемлемый уровень оценки качества цифровой системы передачи. Поскольку технология SDH предусматривает создание секционных заголовков и заголовк пути, метод контроля четности дает возможность тестирования параметров цифровой системы передачи от секции к секции и от начала до конца маршрута. Для этого используются специальные байты (см. выше) в составе заголовков SОН и РОН. Например, количество ошибок, обнаруженно в канале В3 передается в байте G1 РОН VC-4 следующего цикла. На рис.5.2 представлена cxема посекционного мониторинга параметра ошибки BIP. Используемые для контроля четности байты связанные с ними участки цифровой системы передачи приведены в табл.5.1. Рис.5.2. Посекционный мониторинг параметров цифровой передачи.
Таблица 5.1. Байты, используемыедля контроля чётности и участки SDH. К современной цифровой первичной сети предъявляются повышенные требования в части параметров ее надежности. В связи с этим современные первичные сети строятся с использованием резервных трактов и коммутаторов, выполняющих оперативное переключение в случае неисправности на одном из каналов. В этом случае в состав системы передачи включаются цепи резервирования мультиплексорной секции (Multiplex Section Protection - MSP). Как было показано выше, в сети SDH осуществляется постоянный мониторинг параметров ошибки (процедура контроля четности BIP) и параметров связности. В случае значительного ухудшения качества передачи в мультиплексорной секции выполняется оперативное переключение (APS) на резервную мультиплексорную секцию. Это переключение выполняется коммутаторами. По типу резервирования различаются коммутаторы APS с архитектурой 1+1 и 1:n (рис.6.1). Для управления резервным переключением используются байты К1 и К2 секционного заголовка. В байте К1 передается запрос на резервное переключение и статус удаленного конца тракта. В байте К2 передается информация о параметрах моста, используемого в APS с архитектурой 1:n, данные по архитектуре MSP и сообщения о неисправностях, связанные с APS. Различные варианты архитектуры MSP используются в различных схемах резервирования. Наибольшее распространение имеют две схемы, непосредственно связанные с кольцевой топологией сетей SDH -схема "горячего резервирования" (рис.6.2а) и схема распределенной нагрузки (рис.6.2b). В первом случае трафик передается как в прямом, так и в резервном направлении. В случае повреждения происходит реконфигурация и создается резервный канал. В схеме распределенной нагрузки половина графика передается в прямом, половина - в обратном направлении. В этом случае при возникновении неисправности происходит переключение на уровне ресурсов. Согласно ITU-T G.841 время резервного переключения не должно превышать 50 мс. Рис.6.1. Архитектура MSP. Рис.6.2. Схемы резервирования в системах SDH. Литература 1. И.Г.Бакланов "Технологии измерений первичной сети. Часть 1. Системы Е1,PDH, SDH."; ЭКО-ТРЕНДЗ, 2000
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|