Агонисты фенциклидинового сайта
Существует ряд неконкурентных ингибиторов рецепторов NMDA действующих на фенциклидиновый сайт, расположенный в ионном канале, которые действуют на рецепторы только в присутствии агонистов. Отсюда следует, что механизм их действия заключается в блокаде открытого ионного канала. Фенциклидин является высоко аффинным антагонистом рецепторов NMDA. Модификация молекулы фенциклидина путем введения новых ароматических циклов привела к созданию высоко аффинных антагонистов фенциклидинового сайта. Важным структурным классом соединений, проявляющих антагонистическую активность по отношению к фенциклидиновому сайту рецепторов NMDA являются производные 1‑аминоадамантана. Введение небольших алкильных заместителей в положение 3 и 5 усиливают антагонистическую активность, в то время как замещение хотя бы одного водорода при атоме азота приводит к ее резкому снижению. Одним из наиболее ярких соединений этого типа является мемантин, который используется для лечения нейродегенеративных заболеваний. Отсутствие эндогенного агониста по отношению к фенциклидиновому сайту не позволяет однозначно увязать вместе все найденные структурные группы его антагонистов сильно различающихся между собой, поэтому в настоящее время предпринимаются попытки создания комплексных моделей фенциклидинового сайта. Ионотропные глутаматные рецепторы AMPA – каинатный подтип 1) AMPA подтип глутаматных рецепторов, селективным агонистом которых является AMPA. Они содержат как сайт связывающийся с конкурирующими агонистами и антагонистами (глутаматный), так и сайты взаимодействия с неконкурентными (аллостерическими) ингибиторами.
2) Каинатный подтип глутаматных рецепторов, селективным агонистом которых является каиновая кислота. Агонисты Молекула AMPA представляет собой аналог глутаминовой кислоты, в которой роль терминальной карбоксильной группы играет кислая гидроксиизоксазольная группа. Активность к соответствующему рецептору проявляет только S‑изомер AMPA, в то время как R‑изомер практически не активен. Замена атомов водорода метильной группы на галоген (-СF3, -CH2Cl) приводит к агонистам с активностью близкой к активности AMPA. Однако введение объемной третбутильной группировки приводит к потере агонистической активности по отношению к каинатному рецептору. Замена гидроксильной группы в изоксазоле на карбоксильную группировку приводит к пятикратному повышению активности как антагониста. К сильным агонистам AMPA относятся и природный β‑оксозиламино‑L‑аланин. Структуры известных в настоящее время агонистов каиновых рецепторов довольно близки к самой каиновой кислоте. Интересным примером конструирования агониста AMPA каинатного рецептора является объединение в одной молекуле фрагмента AMPA и каиновой кислоты. Производные пролина обладают слабой агонистической активностью по отношению к рецептору AMPA, но также способно к связыванию с рецептором AMDA. Изомер пролина является высоко аффинным и активным агонистом AMPA каинатных рецепторов, хотя, как можно было ожидать, и не слишком селективным по отношению к каждому из подтипов. Очень сильным и очень селективным лигандом каинатного рецептора является такое простое соединение как 4‑метилглутаминовая кислота, которая в 3000 раз более селективна к каинатному, чем к рецептору AMPA и в 200 раз более селективна к каинатному рецептору, чем рецептору NMDA. Структурные требования к выбору селективных агонистов сайта связывания глутаминовой кислоты AMPA каинатных рецепторов, отличающих их от таковых для рецепторов NMDA, не вполне ясны за исключением предпочтительности S‑конфигурации хирального аминокислотного центра.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|