Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Особенности твердого состояния неорганических красителей




В первую очередь следует помнить, что неорганические красители, как природные, так и синтетические,— кристал­лические тела. Особенностью их является упорядоченное расположение многих сотен и тысяч атомов, ионов или мо­лекул. Различаются они как по типу входящих в твердое тело частиц, так и по типу химических связей между ними.

Для того чтобы понять их структуру, рассмотрим на зна­комых из школьного курса химии примерах особенности того или иного вида построения агрегатных состояний.

В газообразном состоянии вещества характеризуются значительными расстояниями между частицами и малыми силами взаимодействия между ними. Они способны зани­мать любой предоставленный объем, и их свойства в основ­ном определяются поведением отдельных частиц. В жид­ком же состоянии частицы веществ сближены на расстоя­ния, соизмеримые с их размерами, силы взаимодействия между частицами значительны. Частицы вещества объеди­няются в крупные агрегаты, в которых их взаимное расположение упорядоченное и движение носит колебательный характер (ближний порядок). На значительных расстоя­ниях от центров агрегатов (дальний порядок) эта упорядоченность нарушается. Прочность связей между агрегатами частиц в жидкости невелика, поэтому в жидком состоянии вещество занимает определенный объем, но способно изменять форму под действием силы тяжести. Поведение веществ в этом состоянии определяет­ся как свойствами частиц и их агрегатов, так и взаимодей­ствиями между ними.

В твердом состоянии возникает упорядоченное располо­жение частиц как в ближнем, так и в дальнем порядках. Твердое вещество не только способно сохранять определен­ный объем, но и неизменность формы под действием силы тяжести. Свойства вещества определяются как его элемен­тарным составом, так и структурой. Взаимное располо­жение частиц в твердом веществе характеризуется рас­стоянием между центрами, вокруг которых они совершают колебательные движения. Упорядоченное расположение атомов (рис. 4), многократно повторяющееся вдоль лю­бой прямой линии, называется кристаллической решеткой.

Рис. 4. Основные типы кристаллических решеток:

а — гексагональная плотнейшая; б — кубическая гранецентрированная; в — кубическая объемноцентрированная; г — кристаллическая решетка ти­па алмаза.

В природе встречается значительное число форм кри­сталлических решеток; их изучением занимается специаль­ная область науки — кристаллография. По характеру взаимодействия между частицами в решетках кристаллические вещества можно разделить на несколько основных групп.

1. Ионные кристаллы. В узлах решеток распо­ложены разноименно заряженные ионы, электростатическое притяжение которых определяет характер твердого тела (например, КСl, NaCl).

2. Атомные кристаллы. В узлах решеток - нейтральные атомы элементов, связанные за счет обобщест­вления валентных электронов (например, алмаз).

3. Молекулярные кристаллы. В узлах реше­ток — нейтральные молекулы, образующие решетку за счет сил межмолекулярного взаимодействия (например, метал­лический галлий, газы в твердом состоянии).

4. Полупроводниковые кристаллы. По характеру связи занимают промежуточное положение между атомными и ионными (например, Cu2 O).

5. Металлические кристаллы. В узлах ре­шетки — ионы одного и того же металла, связанные между собой за счет полусвободных электронов, находящихся в общей для всех ионов зоне проводимости.

Цвет металлов

Цвет металлов зависит от того, волны какой длины они отражают. Из спектров, приведенных на рисунке 5, видно, что белый блеск се­ребра обусловлен равномер­ным отражением почти все­го набора видимых лучей. Золото красновато-желтое потому, что им отражается почти полностью длинновол­новая часть видимого света и поглощаются голубые, си­ние и фиолетовые лучи. А вот тантал и свинец лучше отражают длинноволновые лучи, поэтому они кажутся синеватыми. К серебристо-белому цвету висмута и кобальта примешивается розовый оттенок из-за разности в поглощении коротких и длинных лучей; как можно ви­деть из рисунка, отражение постепенно уменьшается от длинных волн к коротким. Убедительными примерами вза­имодействия света с электронами, при которых происходит перевод их на более высокий уровень и даже полный от­рыв, являются полупроводники и фотоэлементы. В первом случае действие лучей способно вызвать перемещение электронов и появление тока, а во втором — вырвать их из металла.

Рис. 5. Спектры отражения металлов.

Цвет металла зависит от того, какой длины световые волны он поглощает и отражает: ко­бальт — розовый, серебро — белое, золото — желтое.

Большинство неорганических веществ, обладающих цветом, так или иначе связано с ионами металлов, а сами металлы представляют один из типов простых веществ, имеющих цвет, то, по-видимому, логично будет рассмотреть зависимость цвета металла от его структуры.

В периодической системе, начиная со II периода, метал­лы расположены во всех группах с первой по восьмую. Естественно, что характер членов этих групп меняется от одной группы к другой и от периода к периоду. Однако несмотря на большое разнообразив свойств, у металлов есть качества, присущие всем металлическим веществам без исключения. Одной из за­мечательных особенностей является наличие окрашенных соединений у всех переходных металлов. Зависимость окра­ски от наличия свободных d-орбиталей на предвнешнем уровне атомов металла можно объяснить следующим об­разом. Как известно, в d-подуровни имеется пять орбиталей. Они имеют разные, но совершенно опреде­ленные положения в пространстве. На каждой из этих пяти орбиталей может находиться в соответствии с принци­пом Паули но дна электрона. Причем если у атома (или иона) имеются пять или меньше электронов на d-подуровне, то каждый из них старается занять отдельную орбиталь. В этом случае их энергия наименьшая из всех воз­можных. Если электронов становится больше пяти, то про­исходит спаривание, сопровождающееся переходами элект­ронов. Энергия таких переходов электронов соответствует энергиям квантов видимого света. Поглощение таких кван­тов из солнечного белого света и определяет цвет Сu2+, Fe2+, Fe3+, Co2+, Ni2+, Cr3+, Mn3+, Mn4+, Mn6+, Mn7+ других окрашенных ионов переходных элементов.

Наполовину и менее заполненные внутренние электрон­ные орбитали дают простор для переходов электронов.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...