Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Обработка осадка сточных вод




Практически от 30 до 50 % присутствующего в канализационных стоках органического вещества входит в ил-сырец, оседающий в отстойниках и на других стадиях очистки. Он представляет собой густую, чёрную, зловонную массу, состоящую примерно на 98 % из воды и на 2 % из органики, включающей множество патогенных организмов. После соответствующей обработки из него можно получить гумус и использовать его как удобрение.

Обработка ила основана на питании им бактерий и других детритофагов. Это может происходить двумя способами:

- при отсутствии воздуха - анаэробное сбраживание;

- при наличии воздуха - компостирование.
I. Анаэробное сбраживание.

Ил-сырец помещают в крупные герметичные баки. При отсутствии кислорода бактерии питаются илом (анаэробное сбраживание), в качестве побочного продукта вырабатывая биогаз. Он содержит углекислый газ и вещества, придающие стокам дурной запах, но практически на 60 % состоит из метана. Последнее обстоятельство даёт возможность использовать биогаз как топливо. На практике его используют для нагревания самих баков с целью поддержания в них оптимальной для организмов температуры - около 38°С.

Сбраживание завершается через 4-6 недель и в баках остаётся обработанный ил - водный раствор гумуса. Этим раствором можно удобрять сельскохозяйственные поля и газоны прямо в жидком виде, так как полезны и гумус, и богатая биогенами вода. Обработанный ил можно отфильтровать и получить полутвёрдый гумусовый кек, правда, вместе с отфильтрованной водой пропадает основная часть биогенов, что снижает питательную ценность кека.

П. Компостирование.

Для компостирования ил-сырец отфильтровывают, смешивают с древесной стружкой или другим материалом для улучшения аэрации и складывают в кучи или компостные ряды. Аэрацию повышают, дополнительно подавая воздух или механически перемешивая. В компостных кучах бактерии и другие редуценты и детритофаг

перерабатывают органику в гумусоиодобную массу. Тепла, выделяемого при дыхании, оказывается достаточно для гибели патогенных организмов. После шести или восьми недель компостирования от древесной стружки отделяют гумус, готовый для применения на полях.

В последние годы всё большее развитие получает совместное компостирование твёрдых бытовых отходов и осадка сточных вод. Эта технология способствует насыщению компоста микрофлорой и микроэлементами и позволяет в оптимальном режиме поддерживать биотермический процесс. Он сопровождается нагреванием массы до 60-70°С. При этом гибнет большинство болезнетворных микроорганизмов, яйца гельминтов, личинки мух.

Получение биогаза.

 

Биогаз представляет собой смесь из 65-75% метана и 20-35% углекисло­ты, а также незначительных количеств сероводорода, азота, водоро­да. Теплотворная способность биогаза зависит от соотношения ме­тана и углекислоты и составляет 5-7 ккал/м3; 1 м3 биогаза экви­валентен 4 кВт-ч электроэнергии, 0.6 л керосина, 1.5 кг угля и 3.5 кг дров. Неочищенный биогаз используют в быту для обогрева жилищ и приготовления пищи, а также применяют в качестве топ­лива в стационарных установках, вырабатывающих электроэнергию. Компримированный газ можно транспортировать и использовать (после предварительной очистки) в качестве горючего для двигате­лей внутреннего сгорания. Очищенный биогаз аналогичен природ­ному газу.

Сообщества бактерий

1. группа - микроорганизмы-деструк­торы, вызывающие гидролиз сложной органической массы с образо­ванием органических кислот (масляной, пропионовой, молочной), а также низших спиртов, аммиака, водорода;

2. ацетогены, превращаю­щие эти кислоты в уксусную кислоту, водород и окислы углерода

3. метаногены — микроорганизмы, восстанавли­вающие водородом кислоты, спирты и окислы углерода в метан:

 

В процессах метаногенеза можно переработать самое разнооб­разное сырьё — различную растительную биомассу, включая отхо­ды древесины и несъедобные части сельскохозяйственных растений, отходы перерабатывающей промышленности, специально выращенные культуры (водяной гиацинт, гигантские бурые водоросли), жид­кие отходы сельскохозяйственных ферм, промышленные и бытовые стоки, ил очистных сооружений, а также мусор городских свалок.

Метанотенк

Метанотенки, изготовленные из металла или железобетона, могут иметь разнообразную форму, включая куби­ческую и цилиндрическую. Конструкции и детали этих установок несколько варьируют, главным образом это связано с типом перера­батываемого сырья.

Метанотенк пред­ставляет собой герметичную ёмкость, частично погружённую в зем­лю для теплоизоляции и снабженную устройствами для дозирован­ной подачи и подогрева сырья, а также газгольдером — ёмкостью переменного объёма для сбора газа. Очень важным в конструкции метанотенков является обеспечение требуемого уровня перемеши­вания весьма гетерогенного содержимого аппарата.

В зависимости от типа исходного материала, сбраживаемого в метанотенке, интенсивность процесса, включая скорость подачи и полноту переработки, а также состав образуемого биогаза суще­ственно варьируют. Смесь материала обычно засевают ацетогенными и метанообразующими микроорганизмами из отстоя сброженной массы от предыдущего Цикла или из другого метанотенка.

Температура и, следовательно, скорость протекания процесса зависят от вида используемого мета­нового сообщества. Для термофильных организмов процесс реали­зуется при 50-60°С, для мезофильных — при ЗО-4О°С и около 20° — для психрофильных организмов. При повышенных температурах скорость процесса в 2—3 раза выше по сравнению с мезофильными условиями.

Стадии брожения

В ходе сбраживания органической массы на первой, так назы­ваемой «кислотной», фазе в результате образования органических кислот рН среды снижается. При резком сдвиге рН среды в кислую сторону возможно ингибирование метаногенов. Поэтому процесс ведут при рН 7.0-8.5. Против закисления используют известь. Жидкие навозные отходы, богатые азот­содержащими компонентами, разбавляют резаной соломой или раз­личным жомом.

Процессы, протекающие при метановом брожении, эндотермичны и требуют подвода энергии в виде тепла извне. Для подогрева загружаемого сырья и стабилизации температуры процесса на тре­буемом уровне обычно сжигают часть образуемого биогаза. В зави­симости от температуры процесса количество биогаза, идущего на обогрев процесса, может достигать 30% от объёма получаемого.

Нормы загрузки сырья в существующих процессах метаногенеза колеблются в пределах 7-20% объёма субстрата от объёма биоре­актора в сутки. При этом цикличность процесса составляет 5-14 сут.

Сжигание отходов

Термические методы обезвреживания твердых отхо­дов, в свою очередь, условно можно разделить на две группы: термодеструкцию (пиролиз) отходов с получе­нием твердых, жидких и газообразных продуктов и огневой метод (сжигание), приводящий к образованию газообразных продуктов и золы.

Сжигание

1 - При слоевом сжигании в топке мусоросжигатель­ного котла в первой зоне (слое) происходит выход лету­чих продуктов, по мере увеличения температуры про­исходит газификация отходов и далее идет слой горя­щего кокса. Сжигание должно проходить при температуре 800—1000 °С.

Сжигание исходных отходов хотя и является про­стым и универсальным методом утилизации отходов, но имеет массу недостатков, главный из которых, как уже отмечалось, большой остаток шлака, высокий уро­вень образования диоксинов и кислых газов, которые выделяются на стадии газификации и ведут к загряз­нению атмосферы из-за большой влажности при боль­шой доле (выше 40%) пищевых отходов. По этим при­чинам на практике температура в топке не превышает 550 °С.

2. Более современный способ сжигания — это сжига­ние в псевдоожижешюм слое. Принцип работы реакто­ров с псевдоожиженым слоем состоит в подаче горю­чих газов (воздуха) через слой инертного материала (песок с размерами частиц 1—5 мм), поддерживаемого колос­никовой решеткой. Поступившие в реактор отходы интенсивно перемешиваются с инер­тным слоем, при этом существенно интенсифицирует­ся теплообмен. Температура в реакторе колеблется от 800 до 990 °С в зависимости от материала инертного слоя.

К основным достоинствам способа относятся: интен­сивное перемешивание твердой фазы, приводящее прак­тически к полному выравниванию температур, неболь­шое гидравлическое сопротивление слоя; отсутствие движущихся и вращающихся частей; возможность ав­томатизации процесса обезвреживания.

Пиролиз — термохимический процесс, в котором про­исходит разложение органической части отходов и по­лучение полезных продуктов под действием высокой температуры в специальных реакторах. Существуют сле­дующие разновидности метода: окислительный пиролиз с последующим сжиганием пиролизных газов и сухой пиролиз.

Окислительный пиролиз — это процесс термическо­го разложения отходов при их частичном сжигании или непосредственном контакте с продуктами сгорания топ­лива. Газообразные продукты разложения отходов сме­шиваются с продуктами сгорапия топлива или части отходов, поэтому на выходе из реактора они имеют низ­кую теплоту сгорания, но повышенную температуру. Затем смесь газов сжигают в обычных топочных устройствах. В процессе окислительного пиролиза образуется твер­дый углеродистый остаток (кокс), который в дальней­шем можно использовать в качестве твердого топлива или в других целях. Обычно окислитель­ный пиролиз проводят при 600—900 °С (температура нагрева отходов). При сжигании газов пиролиза дымо­вые газы меньше загрязнены летучей золой и сажей, чем при прямом сжигании отходов, что позволяет уп­ростить систему очистки. При пиролизе, например, ше­стивалентный токсичный хром превращается в неток­сичный трехвалентный.

Сухой пиролиз это метод термической переработ­ки отходов, обеспечивающий их высокоэффективное обеззараживание использование в качестве топлива и химического сырья, что способствует созданию мало­отходных технологий. Под сухим пиролизом понима­ют процесс термического разложения отходов, твердо­го или жидкого топлива без доступа кислорода. В ре­зультате сухого пиролиза отходов образуются пиролизный газ с высокой теплотой сгорания, жидкие про­дукты (деготь, нерастворимые масла, органические со­единения) и твердый углеродистый остаток (пирокарбэн).

Пиролиз позволяет ликвидировать твердые и пасто­образные отходы без их предварительной подготовки. Очень важно и то, что этот метод позволяет ликвиди­ровать отходы с повышенной влажностью, отходы «не­удобные» для сжигания.

Но и для этих производств существует диоксиновая опасность. В России систематические определения зара­женности диоксинами не проводились.

Диоксиновая опасность заставила Правительство РФ в 1995 г. принять специальную целевую программу «Защита окружающей природной среды от диоксинов и диоксиноподобных токсикантов», в которой предус­матриваются не только мероприятия по контрольно­му мониторингу, Если все же МСЗ работает на несортированном мусоре (результат сбора навальных отходов из мусоропроводов), то необ­ходимо:

1. Обеспечивать горение при температуре не ниже 920 °С с небольшим коэффициентом избытка воз­духа (до 1,6). Иметь систему регулирования этих параметров.

2. Тщательно перемешивать ТБО в камере сгорания
и сохранять их в основной зоне горения с наи­
большей температурой, как минимум, несколь­
ко секунд.

3. Исключить вынос и неконтролируемое использо­
вание шлака и золы после сжигания. Их склади­
ровать с наибольшими предосторожностями.

4. Обеспечить максимально возможную очистку про­
дуктов сгорания от газообразных органических веществ.

Диоксиновая опасность остается основным препят­ствием для сжигания отходов. В последнее время к этому добавились экономические препятствия и международ­ные соглашения по уменьшению парниковых (трех и более атомных) газов.

 

Лекция 6.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...