Обработка осадка сточных вод
Практически от 30 до 50 % присутствующего в канализационных стоках органического вещества входит в ил-сырец, оседающий в отстойниках и на других стадиях очистки. Он представляет собой густую, чёрную, зловонную массу, состоящую примерно на 98 % из воды и на 2 % из органики, включающей множество патогенных организмов. После соответствующей обработки из него можно получить гумус и использовать его как удобрение. Обработка ила основана на питании им бактерий и других детритофагов. Это может происходить двумя способами: - при отсутствии воздуха - анаэробное сбраживание; - при наличии воздуха - компостирование. Ил-сырец помещают в крупные герметичные баки. При отсутствии кислорода бактерии питаются илом (анаэробное сбраживание), в качестве побочного продукта вырабатывая биогаз. Он содержит углекислый газ и вещества, придающие стокам дурной запах, но практически на 60 % состоит из метана. Последнее обстоятельство даёт возможность использовать биогаз как топливо. На практике его используют для нагревания самих баков с целью поддержания в них оптимальной для организмов температуры - около 38°С. Сбраживание завершается через 4-6 недель и в баках остаётся обработанный ил - водный раствор гумуса. Этим раствором можно удобрять сельскохозяйственные поля и газоны прямо в жидком виде, так как полезны и гумус, и богатая биогенами вода. Обработанный ил можно отфильтровать и получить полутвёрдый гумусовый кек, правда, вместе с отфильтрованной водой пропадает основная часть биогенов, что снижает питательную ценность кека. П. Компостирование. Для компостирования ил-сырец отфильтровывают, смешивают с древесной стружкой или другим материалом для улучшения аэрации и складывают в кучи или компостные ряды. Аэрацию повышают, дополнительно подавая воздух или механически перемешивая. В компостных кучах бактерии и другие редуценты и детритофаг
перерабатывают органику в гумусоиодобную массу. Тепла, выделяемого при дыхании, оказывается достаточно для гибели патогенных организмов. После шести или восьми недель компостирования от древесной стружки отделяют гумус, готовый для применения на полях. В последние годы всё большее развитие получает совместное компостирование твёрдых бытовых отходов и осадка сточных вод. Эта технология способствует насыщению компоста микрофлорой и микроэлементами и позволяет в оптимальном режиме поддерживать биотермический процесс. Он сопровождается нагреванием массы до 60-70°С. При этом гибнет большинство болезнетворных микроорганизмов, яйца гельминтов, личинки мух. Получение биогаза.
Биогаз представляет собой смесь из 65-75% метана и 20-35% углекислоты, а также незначительных количеств сероводорода, азота, водорода. Теплотворная способность биогаза зависит от соотношения метана и углекислоты и составляет 5-7 ккал/м3; 1 м3 биогаза эквивалентен 4 кВт-ч электроэнергии, 0.6 л керосина, 1.5 кг угля и 3.5 кг дров. Неочищенный биогаз используют в быту для обогрева жилищ и приготовления пищи, а также применяют в качестве топлива в стационарных установках, вырабатывающих электроэнергию. Компримированный газ можно транспортировать и использовать (после предварительной очистки) в качестве горючего для двигателей внутреннего сгорания. Очищенный биогаз аналогичен природному газу. Сообщества бактерий 1. группа - микроорганизмы-деструкторы, вызывающие гидролиз сложной органической массы с образованием органических кислот (масляной, пропионовой, молочной), а также низших спиртов, аммиака, водорода;
2. ацетогены, превращающие эти кислоты в уксусную кислоту, водород и окислы углерода 3. метаногены — микроорганизмы, восстанавливающие водородом кислоты, спирты и окислы углерода в метан:
В процессах метаногенеза можно переработать самое разнообразное сырьё — различную растительную биомассу, включая отходы древесины и несъедобные части сельскохозяйственных растений, отходы перерабатывающей промышленности, специально выращенные культуры (водяной гиацинт, гигантские бурые водоросли), жидкие отходы сельскохозяйственных ферм, промышленные и бытовые стоки, ил очистных сооружений, а также мусор городских свалок. Метанотенк Метанотенки, изготовленные из металла или железобетона, могут иметь разнообразную форму, включая кубическую и цилиндрическую. Конструкции и детали этих установок несколько варьируют, главным образом это связано с типом перерабатываемого сырья. Метанотенк представляет собой герметичную ёмкость, частично погружённую в землю для теплоизоляции и снабженную устройствами для дозированной подачи и подогрева сырья, а также газгольдером — ёмкостью переменного объёма для сбора газа. Очень важным в конструкции метанотенков является обеспечение требуемого уровня перемешивания весьма гетерогенного содержимого аппарата. В зависимости от типа исходного материала, сбраживаемого в метанотенке, интенсивность процесса, включая скорость подачи и полноту переработки, а также состав образуемого биогаза существенно варьируют. Смесь материала обычно засевают ацетогенными и метанообразующими микроорганизмами из отстоя сброженной массы от предыдущего Цикла или из другого метанотенка. Температура и, следовательно, скорость протекания процесса зависят от вида используемого метанового сообщества. Для термофильных организмов процесс реализуется при 50-60°С, для мезофильных — при ЗО-4О°С и около 20° — для психрофильных организмов. При повышенных температурах скорость процесса в 2—3 раза выше по сравнению с мезофильными условиями. Стадии брожения В ходе сбраживания органической массы на первой, так называемой «кислотной», фазе в результате образования органических кислот рН среды снижается. При резком сдвиге рН среды в кислую сторону возможно ингибирование метаногенов. Поэтому процесс ведут при рН 7.0-8.5. Против закисления используют известь. Жидкие навозные отходы, богатые азотсодержащими компонентами, разбавляют резаной соломой или различным жомом.
Процессы, протекающие при метановом брожении, эндотермичны и требуют подвода энергии в виде тепла извне. Для подогрева загружаемого сырья и стабилизации температуры процесса на требуемом уровне обычно сжигают часть образуемого биогаза. В зависимости от температуры процесса количество биогаза, идущего на обогрев процесса, может достигать 30% от объёма получаемого. Нормы загрузки сырья в существующих процессах метаногенеза колеблются в пределах 7-20% объёма субстрата от объёма биореактора в сутки. При этом цикличность процесса составляет 5-14 сут. Сжигание отходов Термические методы обезвреживания твердых отходов, в свою очередь, условно можно разделить на две группы: термодеструкцию (пиролиз) отходов с получением твердых, жидких и газообразных продуктов и огневой метод (сжигание), приводящий к образованию газообразных продуктов и золы. Сжигание 1 - При слоевом сжигании в топке мусоросжигательного котла в первой зоне (слое) происходит выход летучих продуктов, по мере увеличения температуры происходит газификация отходов и далее идет слой горящего кокса. Сжигание должно проходить при температуре 800—1000 °С. Сжигание исходных отходов хотя и является простым и универсальным методом утилизации отходов, но имеет массу недостатков, главный из которых, как уже отмечалось, большой остаток шлака, высокий уровень образования диоксинов и кислых газов, которые выделяются на стадии газификации и ведут к загрязнению атмосферы из-за большой влажности при большой доле (выше 40%) пищевых отходов. По этим причинам на практике температура в топке не превышает 550 °С. 2. Более современный способ сжигания — это сжигание в псевдоожижешюм слое. Принцип работы реакторов с псевдоожиженым слоем состоит в подаче горючих газов (воздуха) через слой инертного материала (песок с размерами частиц 1—5 мм), поддерживаемого колосниковой решеткой. Поступившие в реактор отходы интенсивно перемешиваются с инертным слоем, при этом существенно интенсифицируется теплообмен. Температура в реакторе колеблется от 800 до 990 °С в зависимости от материала инертного слоя.
К основным достоинствам способа относятся: интенсивное перемешивание твердой фазы, приводящее практически к полному выравниванию температур, небольшое гидравлическое сопротивление слоя; отсутствие движущихся и вращающихся частей; возможность автоматизации процесса обезвреживания. Пиролиз — термохимический процесс, в котором происходит разложение органической части отходов и получение полезных продуктов под действием высокой температуры в специальных реакторах. Существуют следующие разновидности метода: окислительный пиролиз с последующим сжиганием пиролизных газов и сухой пиролиз. Окислительный пиролиз — это процесс термического разложения отходов при их частичном сжигании или непосредственном контакте с продуктами сгорания топлива. Газообразные продукты разложения отходов смешиваются с продуктами сгорапия топлива или части отходов, поэтому на выходе из реактора они имеют низкую теплоту сгорания, но повышенную температуру. Затем смесь газов сжигают в обычных топочных устройствах. В процессе окислительного пиролиза образуется твердый углеродистый остаток (кокс), который в дальнейшем можно использовать в качестве твердого топлива или в других целях. Обычно окислительный пиролиз проводят при 600—900 °С (температура нагрева отходов). При сжигании газов пиролиза дымовые газы меньше загрязнены летучей золой и сажей, чем при прямом сжигании отходов, что позволяет упростить систему очистки. При пиролизе, например, шестивалентный токсичный хром превращается в нетоксичный трехвалентный. Сухой пиролиз — это метод термической переработки отходов, обеспечивающий их высокоэффективное обеззараживание использование в качестве топлива и химического сырья, что способствует созданию малоотходных технологий. Под сухим пиролизом понимают процесс термического разложения отходов, твердого или жидкого топлива без доступа кислорода. В результате сухого пиролиза отходов образуются пиролизный газ с высокой теплотой сгорания, жидкие продукты (деготь, нерастворимые масла, органические соединения) и твердый углеродистый остаток (пирокарбэн). Пиролиз позволяет ликвидировать твердые и пастообразные отходы без их предварительной подготовки. Очень важно и то, что этот метод позволяет ликвидировать отходы с повышенной влажностью, отходы «неудобные» для сжигания.
Но и для этих производств существует диоксиновая опасность. В России систематические определения зараженности диоксинами не проводились. Диоксиновая опасность заставила Правительство РФ в 1995 г. принять специальную целевую программу «Защита окружающей природной среды от диоксинов и диоксиноподобных токсикантов», в которой предусматриваются не только мероприятия по контрольному мониторингу, Если все же МСЗ работает на несортированном мусоре (результат сбора навальных отходов из мусоропроводов), то необходимо: 1. Обеспечивать горение при температуре не ниже 920 °С с небольшим коэффициентом избытка воздуха (до 1,6). Иметь систему регулирования этих параметров. 2. Тщательно перемешивать ТБО в камере сгорания 3. Исключить вынос и неконтролируемое использо 4. Обеспечить максимально возможную очистку про Диоксиновая опасность остается основным препятствием для сжигания отходов. В последнее время к этому добавились экономические препятствия и международные соглашения по уменьшению парниковых (трех и более атомных) газов.
Лекция 6.
Воспользуйтесь поиском по сайту: ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|