Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

ВОПРОС 16. Какие примеси являются донорами и акцепторами в примесных полупроводниках?




Московский государственный университет путей сообщения

Императора Николая II

Нижегородский филиал

Контрольная работа

По дисциплине «Материаловедение»

Выполнил студент 2 курса

Шифр: 1560 – цСДс -2052

Багов А.С.

Проверил: Серебряков А.С.

Н. Новгород 2016 год

Содержание

ВОПРОС 5. Приведите классификацию проводниковых материалов. 3

ВОПРОС 13 Сравните свойства медных и алюминиевых проводов по сечению, массе и другим характеристикам. 5

ВОПРОС 16 Какие примеси являются донорами и акцепторами в примесных полупроводниках?. 7

ВОПРОС 33 Приведите классификацию диэлектрическов по их свойствам и областям применения. 8

ВОПРОС 36 В чем сходство и различие магнитных свойств ферритов и ферромагнетиков?. 10

ЗАДАЧА 2. 11

ЗАДАЧА 3. 16

ЗАДАЧА 4. 22

ЗАДАЧА 5. 25

Список литературы.. 31

 

 

ВОПРОС 5. Приведите классификацию проводниковых материалов.

Проводниками электрического тока могут быть твердые тела, жидкости, а при соответствующих условиях и газы. Важнейшими практическими применяемыми в электротехнике твердыми проводниковыми материалами являются металлы и их сплавы.

Из металлических проводниковых материалов можно выделить: металлы высокой проводимости, имеющие удельное сопротивление при нормальной температуре не более 0,05 мкОм·м и сплавы высокого сопротивления - более 0,3 мкОм·м. Металлы высокой проводимости используются для проводов, обмоток электрических машин и т.д. Металлы и сплавы высокого сопротивления применяют для изготовления резисторов, электронагревательных приборов и т.д.

К жидким проводникам относятся расплавленные металлы и различные электролиты. Для большинства металлов температура плавления высока.

Механизм прохождения тока в металлах обусловлен движением (дрейфом) свободных электронов под воздействием электрического поля. Поэтому металлы называют проводниками с электронной электропроводностью или проводниками первого рода. Проводниками второго рода - электролитами являются растворы кислот, щелочей и солей. Прохождение тока через эти вещества связано с переносом вместе с электрическими зарядами ионов, вследствие чего состав электролита постепенно изменяется, а на электродах выделяются продукты электролиза. Ионные кристаллы в расплавленном состоянии также являются проводниками второго рода.

 

Рис. 1 – Классификация проводниковых материалов.

ВОПРОС 13. Сравните свойства медных и алюминиевых проводов по сечению, массе и другим характеристикам.

Преимущества меди, обеспечивающие ей широкое применение в качестве проводникового материала, следующие:

1. малое удельное сопротивление (из всех материалов только серебро имеет несколько меньшее удельное сопротивление, чем медь);

2. достаточно высокая механическая прочность;

3. удовлетворительная в большинстве случаев стойкость по отношению к коррозии (медь окисляется на воздухе даже в условиях высокой влажности значительно медленнее, чем, например, железо; интенсивное окисление меди происходит только при повышенных температурах);

4. хорошая обрабатываемость (медь прокатывается в листы, ленты и протягивается в проволоку, толщина которой может быть доведена до тысячных долей миллиметра);

Относительная легкость пайки и сварки.

Стандартная медь, в процентах по отношению к удельной проводимости которой иногда выражают удельные проводимости металлов и сплавов, в отожженном состоянии при 20°С имеет удельную проводимость 58 МСм/м, т.е. r = 0,017241 мкОм×м. Твердую медь употребляют там, где надо обеспечить особо высокую механическую прочность, твердость и сопротивляемость истиранию.

Мягкую медь в виде проволок круглого и прямоугольного сечения применяют главным образом в качестве токопроводящих жил кабелей и обмоточных проводов, где важна гибкость и пластичность (не должна пружинить при изгибе), а не прочность. Медь является сравнительно дорогим и дефицитным материалом. Поэтому она должна расходоваться весьма экономно. Отходы меди на электротехнических предприятиях необходимо тщательно собирать.

Алюминий является вторым по значению (после меди) проводниковым материалом. Это важнейший представитель так называемых легких металлов (т.е. металлов с плотностью менее 5 Мг/м3); плотность литого алюминия около 2,6, а прокатанного — 2,7 Мг/м3. Таким образом, алюминий приблизительно в 3,5 раза легче меди. Температурный коэффициент расширения, удельная теплоемкость и теплота плавления алюминия больше, чем меди. Вследствие высоких значений удельной теплоемкости и теплоты плавления для нагрева алюминия до температуры плавления и перевода в расплавленное состояние требуется большая затрата теплоты, чем для нагрева и расплавления такого же количества меди, хотя температура плавления алюминия ниже, чем меди.

Алюминий обладает пониженными по сравнению с медью свойствами — как механическими, так и электрическими. При одинаковых сечении и длине электрическое сопротивление алюминиевого провода больше, чем медного, в 0,028: 0,0172=1,63 раза. Следовательно, чтобы получить алюминиевый провод такого же электрического сопротивления, как и медный, нужно взять его сечение в 1,63 раза большим, т.е. диаметр должен быть в» 1,3 раза больше диаметра медного провода. Отсюда понятно, что если ограничены габариты, то замена меди алюминием затруднена. Если же сравнить по массе два отрезка алюминиевого и медного проводов одной длины и одного и того же сопротивления, то окажется, что алюминиевый провод хотя и толще медного, но легче его приблизительно в два раза: 8,9/(2,7×1,63)»2.

Поэтому для изготовления проводов одной и той же проводимости при данной длине алюминий выгоднее меди в том случае, если тонна алюминия дороже тонны меди не более чем в два раза. Весьма важно, что алюминий менее дефицитен, чем медь.

 

ВОПРОС 16. Какие примеси являются донорами и акцепторами в примесных полупроводниках?

Полупроводник, легированный донорной примесью, называют полупроводником электронного типа (n -типа) проводимости или электронным полупроводником.

Электронная проводимость появляется в результате легирования полупроводника элементами, имеющими большую валентность, чем валентность атомов из которых состоит полупроводник. Например, для Si и Ge, являющимися элементами 4 группы таблицы Менделеева, в качестве донорных примесей применяют элементы 5 группы, как правило это 15P, 35As, 51Sb.

Замещая узлы кристаллической решетки полупроводника, атомы донорной примеси отдают часть своих валентных электронов для создания ковалентных связей с атомами основного вещества и участвуют в создании дополнительных энергетических уровней в запрещенной зоне полупроводника.

Полупроводник, легированный акцепторной примесью, называют полупроводником дырочного типа (р -типа) проводимости или дырочным полупроводником.

Дырочная проводимость создается в результате легирования полупроводника элементами, имеющими меньшую валентность, чем валентность атомов, из которых состоит полупроводник. Например, для Si и Ge, являющимися элементами четвертой группы таблицы Менделеева, в качестве акцепторных примесей применяют элементы третьей группы, как правило это 5B, 13Al, 31Ga, 49In.

Замещая узлы кристаллической решетки полупроводника, атомы акцепторной примеси захватывают валентный электрон от соседнего атома кремния для создания ковалентных связей с атомами основного вещества, превращаясь при этом в отрицательно заряженные ионы, и участвуют в создании дополнительных энергетических уровней в запрещенной зоне полупроводника.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...