Определение абсолютной мышечной массы
Для определения абсолютной мышечной массы используют формулу Matiegka (1921): M = L х r2 х k где: М -- абсолютная масса мышечной ткани (кг), L -- длина тела (см), r -- среднее значение радиуса плеча (а), предплечья (б), бедра (в) и голени (г) без подкожного жира и кожи (см); k -- константа, равная 6,5. Радиусы сегментов экстремитатов (r) рассчитывают по результатам измерения соответствующих обхватов с вычетом средней толщины подкожного жира: (сумма обхватов а, б, в, г / 25,12) -- (сумма толщины жировых складок (а) спереди, (б, в, г) сзади / 100) Для определения тощей массы тела (LВМ) пользуются формулами: LВМ для мужчин = 0,676L -- 56,6 ± 6,7 кг LВМ для женщин = 0,328W + 21,7 ± 4,2 кг
1.“Стресс” и неспецифические реакции организма на средовые воздействия
Исследования реакций и состояний организма в ответ на экстремальные воздействия были начаты еще Ч. Дарвиным (1872). Им проводилось изучение эмоциональных аффектов человека и животных и было обращено внимание на общность и различия изучаемых эмоциональных проявлений [Ч. Дарвин, 1953]. В исследованиях W. B. Cannon (1927) было показано значение симпатико-адреналовой системы в механизмах экстренной мобилизации организма при эмоциогенных реакциях. В работах И. П. Павлова (1900 и др.) и его учеников А. Д. Сперанского (1935, 1936, 1955), М. К. Петровой (1946, 1955), К. М. Быкова (1947, 1960) было доказано, что в результате воздействия чрезвычайных раздражителей возникают генерализованные нарушения трофики, заболевания внутренних органов. А. Д. Сперанский (1935) в своей монографии “Элементы построения теории медицины”, основываясь на полученных им экспериментальных данных об однотипных изменениях нервной системы и наличии генерализованного процесса в виде нарушений трофики, кровоизлияний, изъязвлений в желудке и кишечнике, изменения надпочечников и других органов, делает заключение о стандартных формах реагирования организма на действие чрезвычайных раздражений. Причем в работах А. Д. Сперанского говорится о ведущей роли нервной системы в реализации этих однотипных генерализованных ответных реакций и о том, что именно нервная система определяет целостный характер реакций и те многозвеньевые механизмы, которые участвуют в осуществлении адаптационно-компенсаторных процессов организма [обзор Б. М. Федорова, 1990].
Однако начало “эры общего адаптационного синдрома” положено в попытках честолюбивого канадского ученого Г. Селье открыть новый гормон. Вскрывая трупы умерщвленных им лабораторных животных, которым предварительно вводились экстракты яичников и плаценты или раствор формалина, H. Selye (1936) обнаружил комплекс схожих изменений в различных органах и тканях исследуемого материала. Об этом было сообщено в 1936 г. в журнале “Nature” [Н. Sеlye, “Syndrome produced by Diverse Nocuous Agents”, 1936]. В связи со сказанным Г. Селье (1960) о “ключе к пониманию и оценке…”: обнаружение им общих (позднее – “неспецифических”) структурных изменений в трупах лабораторных объектов, подвергшихся прижизненному действию разнообразных факторов – как раз являлось неоспоримым и прежде всего физиологическим фактом, требующим своего объяснения. Отвечая на поставленный им самим вопрос о степени неспецифичности обнаруженного им синдрома, Г. Селье (1960) говорит: “…мы не видели вредных стимулов, которые не могли бы вызвать наш синдром”. Показательно, что первоначально вместо термина “стресс” при характеристике открытого им синдрома автор использовал термины “повреждающий” или “вредный” [H. Selye, 1936]. В первой опубликованной в нашей стране монографии Г. Селье (1960) “звучит” текст, который, казалось бы, раз и навсегда должен был определить строгие физиологические рамки изучения и использования открытого им синдрома: “Мы назвали этот синдром “общим” потому, что он вызывается лишь теми агентами, которые приводят к общему состоянию стресса …, и, в свою очередь, вызывает генерализованное, т. е. системное защитное явление”. Эти рамки тем более должны быть “неприкосновенны”, если учесть признание H. Selye, сделанное им в 1952 году: “сегодня, … мне стыдно сказать, что, несмотря на все … возможности, я не сумел прибавить ничего значительного к результатам первых примитивных экспериментов и наблюдений, проделанных в 1936 году” [Г. Селье, 1960].
Следует специально выделить факт, замеченный в этих ранних исследованиях самим H. Selye (1936 и др.), но так и оставленный без должного внимания и им самим, и его многочисленными последователями. Здесь имеется в виду отмеченная ученым уже в первых экспериментах различная выраженность обнаруженных неспецифических изменений в исследуемом посмертном материале (органах и тканях лабораторных животных), появление которых (по мнению Г. Селье, 1960) было обусловлено прижизненным воздействием различных активных факторов. Более того, вполне приемлемый и абсолютно отвечавший полученным в экспериментах 1936 года данным термин “повреждающее воздействие” не удовлетворял Г. Селье прежде всего в связи с результатами новых экспериментов. Оказалось, что “даже такие вполне физиологические стимулы, как кратковременное мышечное напряжение, психическое возбуждение или кратковременное охлаждение, уже вызывают определенные проявления реакции тревоги, например стимуляцию коры надпочечников” [Г. Селье, 1960]. Нетрудно заметить, что здесь речь уже не идет о синдроме, включающем “триаду” обнаруженных H. Selye в 1936 году изменений, полученных в ответ на экстремальные повреждающие воздействия – “в то время объективная регистрация стресса зависела от появления грубых структурных нарушений, которые вызывались лишь наиболее сильными стрессорами” [H. Selye, 1952]. В конечном итоге Г. Селье просто объединил все раздражители единым термином “стрессор”, а любые реакции организма на внешние и внутренние воздействия предложил считать “стрессом”. Более того, в поздних работах Г. Селье “стресс” уже перестал быть генерализованной реакцией организма, а стал характеристикой любых неспецифических проявлений на любом уровне организации живой материи [С. Е. Павлов, 2000]. И, как ни странно, такое превращение реального физиологического термина в нечто абсолютно неконкретное (“Слово “стресс” характеризуется как один из наиболее неточных терминов научного словаря и сравнивается со словом грех: оба эти слова обозначают разные вещи для разных людей, оба они являются короткими и эмоционально насыщенными, выражающими нечто такое, что в противном случае пришлось бы описывать с помощью пространных выражений” - У. Седерберг, 1970; “стремление все неспецифические изменения, возникающие в... организме, трактовать как проявление стресс-реакции делает это понятие расплывчатым и крайне неопределенным” - П. Д. Горизонтов, Т. Н. Протасова, 1968) было безоговорочно принято научным большинством.
Однако именно результаты, полученные Г. Селье в его ранних и последующих исследованиях и несогласие с выдвинутой им концепцией “общего адаптационного синдрома” стимулировало ряд отечественных ученых на изучение особенностей реагирования живого организма на раздражители различной силы. В частности было замечено, что “не все раздражители вызывают однотипную стандартную гормональную реакцию” [П. Д. Горизонтов, Т. Н. Протасова, 1968]. В результате многолетних исследований группы советских ученых были получены результаты, свидетельствующие о том, что организм по разному реагирует на раздражители различной силы [Л. X. Гаркави, 1968a,b; М. А. Уколова, Ю. Н. Бордюшков, Л. X. Гаркави, 1968; Л. X. Гаркави, 1969; М. А. Уколова, Л. X. Гаркави, Е. Б. Квакина, 1970; Е. Б. Квакина, М. А. Уколова, 1969; Е. Б. Квакина, 1972; Л. X. Гаркави, Е. Б. Квакина, 1975; Е. Б. Квакина, Л. X. Гаркави, 1975; Л. X. Гаркави, Е. Б. Квакина, М. А. Уколова, 1977]. Ими были выделены: неспецифическая реакция организма на действие слабых раздражителей (“реакция тренировки”), неспецифическая реакция организма на действие раздражителей средней силы (“реакция активации”) и неспецифическая реакция организма на сильные воздействия (“реакция стресс”) [Л. X. Гаркави, Е. Б. Квакина, М. А. Уколова, 1977, 1979]. Стоит предположить, что “чрезмерные” по силе воздействия должны приводить к изменениям в организме человека или животного, несовместимым с его жизнью и служить причиной, его смерти, а следовательно реакции организма на эти воздействия уже не могут рассматриваться в курсе нормальной физиологии [С. Е. Павлов, 2000, 2001].
2.Основные положения теории адаптации Селье-Меерсона
Тем не менее, результаты вышеуказанных исследований [Л. X. Гаркави, Е. Б. Квакина, М. А. Уколова, 1977, 1979; и др.] были проигнорированы именитым большинством, безоговорочно вставшим на позиции Г. Селье не только в плане принятия его концепции об “общем адаптационном синдроме”, но и в отношении “узаконивания” его представлений о собственно процессе адаптации. В 70-80-х годах сегодня уже прошлого столетия “на свет” появился целый ряд работ, развивающих представления Г. Селье в отношении процесса адаптации в целом. Из этих работ наиболее известны труды Ф. З. Меерсона (1981), Ф. З. Меерсона, М. Г. Пшенниковой (1988) и В. Н. Платонова (1988). Ф. З. Меерсон (1981) и Ф. З. Меерсон, М. Г. Пшенникова (1988) определяют “индивидуальную адаптацию”, как “развивающийся в ходе жизни процесс, в результате которого организм приобретает устойчивость к определенному фактору окружающей среды и, таким образом, получает возможность жить в условиях, ранее несовместимых с жизнью и решать задачи, прежде неразрешимые”. Эти же авторы разделяют процесс адаптации на “срочную” и “долговременную” адаптации. Срочная адаптация по Ф. З. Меерсону (1981) – это по сути экстренное функциональное приспособление организма к совершаемой этим организмом работе. Долговременная адаптация по Ф. З. Меерсону (1981) и В. Н. Платонову (1988, 1997) – структурные перестройки в организме, происходящие вследствие накопления в организме эффектов многократно повторенной срочной адаптации (так называемый “кумулятивный эффект” в спортивной педагогике – Н. И. Волков, 1986) Основой долговременной адаптации по Ф. З. Меерсону (1981) является активация синтеза нуклеиновых кислот и белка. В процессе долговременной адаптации по Ф. З. Меерсону (1981) растет масса и увеличивается мощность внутриклеточных систем транспорта кислорода, питательных и биологически активных веществ, завершается формирование доминирующих функциональных систем, наблюдаются специфические морфологические изменения во всех органах, ответственных за адаптацию. В целом представление о процессе адаптации Ф. З. Меерсона (1981) и его последователей укладывается в концепцию, согласно которой вследствие многократного повторения “стрессовых” воздействий на организм столь же многократно запускаются механизмы “срочной” адаптации, оставляющие “следы”, которые уже инициируют запуск процессов долговременной адаптации. В дальнейшем происходит чередование циклов “адаптация” - “деадаптация” - “реадаптация”. При этом “адаптация” характеризуется увеличением мощности (функциональной и структурной) физиологических систем организма с неизбежной гипертрофией рабочих органов и тканей. В свою очередь “деадаптация” - потеря органами и тканями свойств, приобретенных ими в процессе долговременной адаптации, а “реадаптация” - повторная адаптация организма к неким действующим факторам (в спорте – к “физическим нагрузкам”).
В. Н. Платонов (1997) выделяет три стадии срочных адаптационных реакций: · Первая стадия связана с активизацией деятельности различных компонентов функциональной системы, обеспечивающей выполнение данной работы. Это выражается в резком увеличении ЧСС, уровня вентиляции легких, потребления кислорода, накопления лактата в крови и т. д. · Вторая стадия наступает, когда деятельность функциональной системы протекает при стабильных характеристиках основных параметров ее обеспечения, в так называемом устойчивом состоянии. · Третья стадия характеризуется нарушением установившегося баланса между запросом и его удовлетворением в силу утомления нервных центров, обеспечивающих регуляцию движений и исчерпанием углеводных ресурсов организма. Формирование “долговременных адаптационных реакций” (сохранена авторская редакция) по мнению В. Н. Платонова (1997) так же протекает стадийно: · Первая стадия связана с систематической мобилизацией функциональных ресурсов организма спортсмена в процессе выполнения тренировочных программ определенной направленности с целью стимуляции механизмов долговременной адаптации на основе суммирования эффектов многократно повторяющейся срочной адаптации. · Во второй стадии на фоне планомерно возрастающих и систематически повторяющихся нагрузок происходит интенсивное протекание структурных и функциональных преобразований в органах и тканях соответствующей функциональной системы. В конце этой стадии наблюдается необходимая гипертрофия органов, слаженность деятельности различных звеньев и механизмов, обеспечивающих эффективную деятельность функциональной системы в новых условиях. · Третью стадию отличает устойчивая долговременная адаптация, выражающаяся в наличии необходимого резерва для обеспечения нового уровня функционирования системы, стабильности функциональных структур, тесной взаимосвязи регуляторных и исполнительных механизмов. · Четвертая стадия наступает при нерационально построенной, обычно излишне напряженной тренировке, неполноценном питании и восстановлении и характеризуется изнашиванием отдельных компонентов функциональной системы. 2.1.Адаптационные изменения в сердечно-сосудистой системе 2.1.1.Адаптационные изменения миокарда
Сердце, адаптированное к физической нагрузке, обладает высокой сократительной способностью. Но оно сохраняет высокую способность к расслаблению в диастоле при высокой частоте сокращений, что обусловлено улучшением процессов регуляции обмена в миокарде и соответствующим увеличением его массы (гипертрофией сердца). Гипертрофия — нормальный морфологический феномен усиленной сократительной деятельности (гиперфункции) сердца. Если плотность капиллярного русла на единицу массы сердца при этом повышается или сохраняется на уровне, свойственном нормальному миокарду, гипертрофия происходит в обычных физиологических рамках. Сердечная мышца не испытывает недостатка в кислороде при напряженной работе. Более того, функциональная нагрузка на единицу сердечной массы падает. Следовательно, и тяжелая физическая нагрузка будет переноситься сердцем с меньшим функциональным напряжением. Истощение источников энергии при напряженных нагрузках стимулирует синтез белковых структур клеточных элементов: как сократительных, так и энергетических (митохондриальных). Если истощение источников энергии превышает физиологические нормы, может наступить перенапряжение, срыв адаптации. В нормально развитом сердце на 1мм3 мышечной массы в покое раскрыты 2300 капилляров. При мышечной работе раскрываются дополнительно около 2000 капилляров. Долговременная адаптация обеспечивается усилением биосинтетических процессов в сердечной мышце и увеличением ее массы. При периодических физических нагрузках адаптация сердца растягивается во времени, периоды отдыха от нагрузок приводят к сбалансированному увеличению структурных элементов сердца. Масса сердца увеличивается в пределах 20-40%. Капиллярная сеть растет пропорционально увеличивающейся массе. Тренированное, умеренно гипертрофированное сердце в условиях относительного физиологического покоя имеет пониженный обмен, умеренную брадикардию, сниженный минутный объем. Оно работает на 15-20% экономичнее, чем нетренированное. При систематической мышечной работе в сердечной мышце тренированного сердца снижается скорость гликолитических процессов: энергетические продукты расходуются более экономно. Морфологические перестройки сердца проявляются в увеличении как мышечной массы, так и клеточных энергетических машин — митохондрий. Увеличивается также масса мембранных систем. Иначе говоря, чувствительность сердца к симпатическим влияниям, усиливающим его функции, при мышечной работе повышается. Одновременно совершенствуются и механизмы экономизации: в покое и при малоинтенсивной нагрузке сердце работает с низкими энергозатратами и наиболее рациональным соотношением фаз сокращения. Если сократительная масса сердца увеличивается на 20-40%, то функциональная нагрузка на единицу массы уменьшается на соответствующую величину. Это один из наиболее надежных и эффективных механизмов сохранения потенциальных ресурсов сердца. Как свидетельствует практический опыт, юные спортсмены, имеющие физиологически гипертрофированное сердце, хорошо адаптируются к физическим нагрузкам умеренной мощности. При выполнении нагрузки предельной мощности у них отчетливо проявляется гипердинамический синдром. Восстановительные процессы отличаются высокой скоростью. Полезная производительность сердца возрастает по сравнению с нетренированным примерно в два раза. Между тем нагрузка на единицу массы тренированного сердца при максимальной работе возрастает до 25%. Иначе говоря, перегрузка такого сердца практически исключается даже при весьма напряженной мышечной работе, характерной для современного спорта. Увеличение ЧСС и сократительной способности сердца - естественные адаптивные реакции на нагрузку. Не случайно ЧСС сохраняет свою значимость как показатель адаптации сердца при использовании любых, самых современных функциональных проб с физической нагрузкой. Мышечная работа требует повышенного притока кислорода и субстратов к мышцам. Это обеспечивается увеличенным объемом кровотока через работающие мышцы. Поэтому увеличение минутного объема кровотока при работе - один из наиболее надежных механизмов срочной адаптации к динамической нагрузке. В нетренированном сердце взрослого человека резервы повышения ударного объема крови исчерпываются уже при ЧСС 120-130 уд /мин. Дальнейший рост минутного объема происходит только за счет ЧСС. По мере роста тренированности расширяется диапазон ЧСС, в пределах которого ударный объем крови продолжает увеличиваться. У высокотренированных спортсменов и детей он продолжает нарастать и при ЧСС 150-160 уд /мин. В самой сердечной мышце срочные адаптацтонные изменения проявляются в мобилизации энергетических ресурсов. Первичными субстратами окисления в сердечной мышце служат жирные кислоты, глюкоза, в меньшей степени - аминокислоты. Энергия их окисления аккумулируется митохондриями в виде АТФ, а затем транспортируется к сократительным элементам сердца. При повышении ударного объема крови сокращения сердца учащаются. Происходит это вследствие более эффективного использования энергии АТФ. Повышение сократительной способности сердца сочетается с совершенствованием восстановительных процессов во время диастолы [Я. М. Коц, 1983].
2.2.Адаптационные изменения систем дыхания и крови 2.2.1.Адаптационные изменения системы внешнего дыхания.
Мышечная работа вызывает многократное (в 15-20 раз) увеличение объема легочной вентиляции. У спортсменов, тренирующихся преимущественно на выносливость, минутный объем легочной вентиляции достигает 130-150 л/мин и более. У нетренированных людей увеличение легочной вентиляции при работе Является результатом учащения дыхания. У спортсменов при высокой частоте дыхания растет и глубина дыхания. Это наиболее рациональный способ срочной адаптации дыхательного аппарата к нагрузке. Достижение предельных величин легочной вентиляции, что свойственно высококвалифицированным спортсменам, является результатом высокой согласованности актов с сокращением дыхательных мышц, а также с движениями в пространстве и во времени: расстройство координации в работе дыхательных мышц нарушает ритм дыхания и приводит к ухудшению легочной вентиляции. Решающая роль в нарастании объема легочной вентиляции в начале работы принадлежит нейрогенным механизмам. Импульсация от сокращающихся скелетных мышц, а также нисходящие нервные импульсы из двигательных зон коры полушарий большого мозга стимулируют дыхательный центр. Гуморальные факторы регуляции включаются позже, при продолжающейся работе и достижении адекватных ей величин легочной вентиляции. Регуляторная роль СО2 проявляется в поддержании необходимой частоты дыхания и установлении необходимого соответствия легочной вентиляции величине физической нагрузки. Систематическая мышечная деятельность сопровождается увеличением силы дыхательной мускулатуры. Отчетливо растет мощность дыхательных движений. Скорость движения воздушной струи у спортсменов достигает 7-7,5 л/с на вдохе и 5-6 л/с на выдохе. У нетренированных людей мощность вдоха не превышает 5-5,5 л/с, выдоха - 5 л/с. Важным физиологическим механизмом повышения эффективности внешнего дыхания является закрепление условнорефлекторных связей, обеспечивающих согласование дыхания с длительностью выполнения отдельных частей целостного акта (например, при плавании). В этом отчетливо проявляется системный характер управления физиологическими функциями [Я. М. Коц, 1983].
2.2.2.Адаптационные изменения системы крови.
Первичной ответной реакцией системы крови на физическую нагрузку являются изменения в составе форменных элементов крови. Наиболее отчетливы сдвиги в так называемой белой крови — лейкоцитах. Миогенный лейкоцитоз характеризуется преимущественным увеличением зернистых лейкоцитов в общем кровотоке. Одновременно происходит разрушение части лейкоцитов: при напряженной физической нагрузке резко уменьшается число эозинофилов. Структурный материал, образующийся при их распаде, идет на пластические нужды, на восстановление и биосинтез клеточных структур. Физическая нагрузка, связанная с эмоциональными напряжениями, вызывает более значительные сдвиги в составе крови. Увеличение числа эритроцитов в крови - надежный инструмент повышения устойчивости к мышечной гипоксии. Нормальная лейкоцитарная формула после физических нагрузок восстанавливается, как правило, в течение суток. Система так называемой красной крови восстанавливается медленнее: через 24 часа отдыха сохраняются и увеличенное число эритроцитов, и незрелые их формы - ретикулоциты. У спортсменов 16-18 лет после напряженной мышечной работы появляются также и незрелые формы тромбоцитов. В результате мышечной деятельности активизируется система свертывания крови. Это одно из проявлений срочной адаптации организма к воздействию физических нагрузок. В процессе активной двигательной деятельности возможны травмы с последующим кровотечением. Программируя “с опережением” такую ситуацию, организм повышает защитную функцию системы свертывания крови. Это своеобразная адаптация впрок, на случай повреждений при мышечной работе. Восстановление системы свертывания крови происходит в течение 24-36 часов после нагрузки [Я. М. Коц, 1983].
2.3.Роль гипоталамо-гипофизарно-надпочечниковой системы в процессе адаптации
Структурные изменения на клеточном и органном уровнях при физических нагрузках начинаются с мобилизации эндокринной функции, и в первую очередь — гормональной системы гипоталамус—гипофиз—надпочечники. Схематически это выглядит следующим образом. Гипоталамус преобразует нервный сигнал реальной или предстоящей физической нагрузки в эфферентный, управляющий, гормональный сигнал. В гипоталамусе освобождаются гормоны, активирующие гормональную функцию гипофиза. Ведущую роль в выработке адаптивных реакций среди этих гормонов играет кортиколиберин. Под его влиянием освобождается адренокортикотропный гормон гипофиза (АКТГ), который вызывает мобилизацию надпочечников. Гормоны надпочечников повышают устойчивость организма к физическим напряжениям. В обычных условиях жизнедеятельности организма уровень АКТГ в крови служит и регулятором его секреции гипофизом. При увеличении содержания АКТГ в крови его секреция автоматически затормаживается. Но при напряженной физической нагрузке система автоматической регуляции изменяется. Интересы организма в период адаптации требуют интенсивной функции надпочечников, которая стимулируется повышением концентрации АКТГ в крови. Адаптация к физической нагрузке сопровождается и структурными изменениями в тканях надпочечников. Эти изменения приводят к усилению синтеза кортикоидных гормонов. Глюкокортикоидный ряд гормонов активирует ферменты, ускоряющие образование пировиноградной кислоты и использование ее в качестве энергетического материала в окислительном цикле. Одновременно стимулируются и процессы ресинтеза гликогена в печени. Глюкокортикоиды повышают и энергетические процессы в клетке, освобождают биологически активные вещества, которые стимулируют устойчивость организма к внешним воздействиям. Гормональная функция коры надпочечников во время мышечной работы небольшого объема практически не меняется. Во время большой по объему нагрузки происходит мобилизация этой функции. Неадекватные, чрезмерные нагрузки вызывают угнетение функции. Это своеобразная защитная реакция организма, предупреждающая истощение его функциональных резервов. Секреция гормонов коры надпочечников меняется при систематической мышечной работе в целом по правилу экономизации. Повышенная продукция гормонов мозгового слоя надпочечников способствует росту энергопроизводства, усилению мобилизации гликогена печени и скелетных мышц. Адреналин и его предшественники обеспечивают формирование адаптивных изменений и до начала действия физической нагрузки. Таким образом, гормоны надпочечников способствуют формированию комплекса адаптивных реакций, направленных на повышение устойчивости клеток и тканей организма к действию физических нагрузок. Надо сказать, что этим прекрасным адаптивным эффектом обладают только эндогенные гормоны, т. е. гормоны, выработанные собственными железами организма, а не введенные извне. Использование экзогенных гормонов не имеет физиологического смысла. В функциях мозгового и коркового слоев надпочечников в процессе адаптации к физическим нагрузкам складываются новые соотношения взаимной коррекции. Так, при увеличенной продукции адреналина — гормона мозгового слоя надпочечников — увеличивается и продукция кортикостероидов, сдерживающих его мобилизующую роль. Иначе говоря, создаются условия для оптимального и адекватного нагрузке изменения продукции гормонов мозгового и коркового слоев надпочечников.
3.Основные положения современной теории адаптации 3.1. Некоторые критические замечания к теории адаптации Селье-Меерсона
Тем не менее “теория адаптации” в редакции Ф. З. Меерсона (1981), Ф. З. Меерсона, М. Г. Пшенниковой (1988) и В. Н. Платонова (1988, 1997) не способна дать ответ на целый ряд крайне важных для теории и практики вопросов [С. Е. Павлов, Т. Н. Кузнецова, 1998; С. Е. Павлов, 2000, 2001]. В монографии С. Е. Павлова (2000) целая глава посвящена критическому анализу основных положений “господствующей” (по выражению автора) “теории адаптации”, основные претензии к которой со стороны указанного автора сводятся к следующему: 1. Неспецифические реакции в “теории адаптации” Ф. З. Меерсона (1981) и его последователей представлены исключительно “стрессом”, который к сегодняшнему дню в редакции большинства авторов напрочь лишен своего изначального физиологического смысла. С другой стороны, возвращение термину “стресс” его изначального физиологического смысла делает процесс адаптации (а следовательно и - жизни) в редакции Ф. З. Меерсона и его последователей дискретным, что уже противоречит и логике и законам физиологии; 2. “Теория адаптации” в редакции Ф. З. Меерсона (1981), Ф. З. Меерсона, М. Г. Пшенниковой (1988), В. Н. Платонова (1988, 1997) носит преимущественно неспецифическую направленность, что с учетом выхолощенности неспецифического звена адаптации не позволяет считать ее “работающей”; 3. Представления о процессе адаптации Ф. З. Меерсона (1981) и В. Н. Платонова (1988, 1997) носят недопустимо механистический, примитивный, линейный характер (адаптация-деадаптация-реадаптация), что не отражает сущности сложных, реально протекающих в живом организме физиологических процессов; 4. В “теории адаптации” проповедуемой Ф. З. Меерсоном (1981) и его последователями проигнорированы принципы системности при оценке происходящих в организме процессов. Более того, их позиция в отношении процесса адаптации никоим образом не может быть названа системной, а, следовательно, предложенная ими “теория адаптации” не применима для ее использования в исследовательской работе и практике; 5. Разделение единого процесса адаптации на “срочную” и “долговременную” адаптации физиологически необоснованно; 6. Терминологическая база “господствующей теории адаптации” не соответствует физиологическому содержанию происходящего в целостном организме процесса адаптации 7. Если встать на позиции “теории адаптации” Селье-Меерсона, то следует признать, что лучшими спортсменами во всех видах спорта должны быть культуристы – именно у них максимально развиты все группы мышц. Тем не менее это не так. И кстати сегодняшнее понимание термина “тренированность” (в большей степени педагогического понятия) ни в коей мере не соответствует физиологическим реалиям как раз в связи с неприятием спортивно-педагогическим большинством физиологических реалий [С. Е. Павлов, 2000];
Сила мышц соматоскопия антропометрия мышечный силовой Силу мышц определяют по максимальному проявлению усилия, которое может развить группа мышц в определенных условиях. Обычно одновременно сокращается целая группа мышц, поэтому трудно точно определить работу каждой отдельной мышцы в суммарном проявлении силы. Кроме того, в действии мышц участвуют костные рычаги. Различают три вида мышечного сокращения: изометрическое, концентрическое (миометрическое) и эксцентрическое (или ометрическое). Сокращение мышцы, при котором она развивает напряжение, но не изменяет своей длины, называется изометрическим. Такое сокращение проявляется в виде статической силы. Мерой концентрической силы является максимальное сопротивление, которое мышцы способны преодолевать на пути соответствующего движения. Эта разновидность силы обозначается как динамическая. Эксцентричная сила возникает при сопротивлении внешней силы под влиянием которой мышцы растягиваются, то есть длина их увеличивается. Для большинства видов мышечной работы характерен ауксотонический режим, в котором сочетается сокращение и напряжение. Определение динамической силы весьма сложно, поэтому обычно ограничиваются измерением статической (изометрической) силы и выносливости мышц. Мужчины достигают максимума изометрической силы в возрасте около 30 лет, потом сила уменьшается. Этот процесс быстрее идет в крупных мышцах нижних конечностей и туловища. Сила рук сохраняется дольше. В таблице "Средние значения изометрической силы некоторых мышечных групп" приведены показатели силы различных мышечных групп, полученных при обследовании около 600 человек (средний рост мужчин 171 см, женщин -- 167 см).
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|