Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Технико-экономическое обоснование выбора мощности трансформаторов




На подстанции «Байдарка» организован учет электрической энергии. Происходит учет как активной так и реактивной энергии. Для этого на подстанции установлены счетчики активной и реактивной энергии.

Для контроля нагрузки на фидерах и вводах установлены амперметры, а для пропорционального снижения первичного тока во вторичный и для изоляции вторичных цепей от первичных установлены трансформаторы тока. Все щитовые приборы установленные на подстанции изготовлены на номинальный ток 5 А, поэтому вторичный ток трансформаторов тока составляет 5 А. Важной характеристикой трансформаторов тока является коэффициент трансформации, который показывает отношение первичного тока ко вторичному. Этот коэффициент трансформации указывается на амперметрах. Тогда шкала амперметров градуируется в первичных токах, хотя по обмотке амперметра протекает вторичный ток.

Данные приборов учета приведены в таблице 8.1

 

Таблица 8.1 – данные приборов учета

№ пп Место установки Тип амперметра Тип счетчика и вид учитываемой энергии Тип трансформатора тока, его коэффициент трансформации
1 Ячейка фидера Б-01 Э378 ЦЭ6803В активная ТПЛ-10 300/5
2 Ячейка фидера Б-02 Э378 ЦЭ6803В активная ТПЛ-10 300/5
3 Ячейка фидера Б-02   СР4У-И673М реактивная  
4 Ячейка фидера Б-03 Э378 ЦЭ6803В активная ТПЛ-10 150/5
5 Ячейка фидера Б-03   СР4У-И673М реактивная  
6 Ячейка №4 ТСН-1   СА4У-И672М активная Т-066 50/5
7 Ячейка ввода6кВТ-1 Э378 ЦЭ6803В активная ТПЛ-10 600/5

Продолжение таблицы 8.1

  Место установки Тип амперметра Тип счетчика и вид учитываемой энергии Тип трансформатора тока, его коэффициент трансформации
8 Ячейка ввода6кВТ-1   СР4У-И673М  
9 Ячейка Фидера Б-07 Э378 ЦЭ6803В активная ТПЛ-10 150/5
10 Ячейка Фидера Б-08 Э378 ЦЭ6803В активная ТПЛ-10 400/5
11 Ячейка Фидера Б-08   СА4У-И673М реактивная  
12 Ячейка Фидера Б-09 Э378 ЦЭ6803В активная ТПЛ-10 300/5
13 Ячейка Фидера Б-12 Э378 ЦЭ6803В активная ТПЛ-10 300/5
14 Ячейка №13 ТСН-2   СА4У-И672М Т-066 50/5
15 Ячейка ввода6кВТ-2 Э378 ЦЭ6803В активная ТПЛ-10 600/5
16 Ячейка ввода6кВТ-2   СР4У-И673М  
17 Ячейка Фидера Б-17 Э378 ЦЭ6803В активная ТПЛ-10 300/5
18 Ячейка Фидера Б-17   СА4У-И673М реактивная  
19 Ячейка Фидера Б-18 Э378 ЦЭ6803В активная ТПЛ-10 400/5
20 Ячейка Фидера Б-18   СА4У-И673М реактивная  
21 Ячейка Фидера Б-20 Э378 ЦЭ6803В активная ТПЛ-10 400/5
22 Ячейка Фидера Б-20   СА4У-И673М реактивная  

 

Нагрузки на подстанции «Байдарка» не большие и поэтому не всегда точные показания можно получить по амперметрам установленных на подстанции. В связи с этим на подстанции «Байдарка» установлена телемеханическая система «Гранит», где по каналам связи информация по нагрузкам и об аварийных и предупредительных сигналах поступает к диспетчеру. Информация по нагрузкам по данной системе передается с точностью до 1,5%.

На подстанции для составления графиков нагрузки и определения ее пиков проводятся летние и зимние режимные дни.

Данные суточных ведомостей подстанции «Байдарка» за 21 июня 2006 года и за 20 декабря 2006 года предоставлены диспетчерской службой «Центральных электрических сетей». Эти данные были обработаны и представлены далее в виде таблиц.

 

Таблица 8.2 - Данные зимнего режимного дня 20декабря 2006 года

Время, ч Напряжение 1секции, кВ U Ток 1секции, А I   Мощность 1секции, ква S Напряжение 2секции, кВ U Ток 2секции, А I Мощность 2секции, ква S
0 6,5 79 892 6,4 15 164
1 6,5 82 919 6,4 15 164
2 6,6 77 878 6,5 15 166
3 6,6 82 933 6,5 15 166
4 6,6 82 933 6,5 15 166
5 6,6 84 960 6,5 15 166
6 6,5 82 919 6,5 15 166
7 6,5 84 946 6,4 15 164
8 6,5 98 1108 6,4 13 139
9 6,3 190 2069 6,3 43 464
10 6,3 166 1807 6,3 17 187
11 6,3 178 1938 6,3 64 698
12 6,4 108 1197 6,4 15 164
13 6,4 158 1756 6,4 15 164
14 6,4 156 1729 6,3 56 607
15 6,4 149 1649 6,3 56 607
16 6,3 125 1362 6,3 15 161
17 6,4 70 772 6,3 16 174

Продолжение таблицы 8.2

Время, ч Напряжение 1секции, кВ U Ток 1секции, А I   Мощность 1секции, ква S Напряжение 2секции, кВ U Ток 2секции, А I Мощность 2секции, ква S
18 6,4 70 772 6,4 16 177
19 6,4 70 772 6,4 16 177
20 6,5 70 784 6,4 14 151
21 6,5 65 730 6,4 14 151
22 6,6 65 741 6,5 14 153
23 6,5 60 675 6,4 14 153

 

Таблица 8.3 - Данные летнего режимного дня 21 июня 2006 года

Время, ч Напряжение 1секции, кВ U Ток 1секции, А I Мощность 1секции, ква S Напряжение 2секции, кВ U Ток 2секции, АI Мощность 2секции, ква S
0 6,5 35 392 6,3 11 117
1 6,5 35 392 6,3 11 117
2 6,5 35 392 6,3 11 117
3 6,5 32 364 6,3 11 117
4 6,5 32 364 6,3 11 117
5 6,6 31 350 6,3 11 117
6 6,5 31 345 6,3 11 117
7 6,5 33 371 6,3 2 261
8 6,4 48 536 6,2 8 90
9 6,2 132 1418 6,1 19 202
10 6,1 131 1384 6,1 37 393
11 6,1 154 1629 6,1 82 862
12 6,3 73 801 6,2 6 64
13 6,2 129 1385 6,2 6 64
14 6,2 149 1600 6,1 68 723
15 6,2 126 1355 6,1 6 63
16 6,3 97 1058 6,1 70 735
17 6,4 41 450 6,2 50 541
18 6,4 26 290 6,2 7 77
19 6,5 26 294 6,3 7 78
20 6,5 36 403 6,3 41 445
21 6,5 33 376 6,3 40 432
22 6,5 39 443 6,3 62 681
23 6,5 30 335 6,3 10 105

На основании данных полученных в ходе режимного дня строим графики нагрузки на которых так же в виде прямой показываем мощности установленного и проектируемых трансформаторов (смотри графическую часть лист 3 и 4)

________ Прямая, соответствующая мощности установленного трансформатора 6300ква

________ Прямая, соответствующая мощности проектируемого трансформатора 2500ква

________ Прямая, соответствующая мощности проектируемого трансформатора 1600ква

________ График нагрузки с перспективой развития

________ Реальный график нагрузки

 

Рисунок 8.1 Зимний график нагрузки первого трансформатора


Рисунок 8.2 Зимний график нагрузки второго трансформатора

 

Рисунок 8.3 Летний график нагрузки первого трансформатора


Рисунок 8.4 Летний график нагрузки второго трансформатора

 

Сравнив графики зимнего и летнего периода можно сделать вывод о том, что трансформаторы на подстанции «Байдарка» больше загружены зимой. Поэтому, в дальнейшем используем для расчетов данные зимнего режимного дня.

Так же из графиков нагрузок видим, что трансформаторы загружены не полностью, а точнее первый трансформатор на 33%, а второй трансформатор на 14%.

Как один из выходов для более эффективного использования трансформаторов отключение одного из них и перевод всей нагрузки на один трансформатор. Но при этом снижается надежность энергоснабжения, а у нас имеются потребители второй категории.

Кроме того трансформаторы установленные на подстанции «Байдарка» в работе с 1970 года, то есть отработали 36 лет, а нормативный срок службы трансформаторов 25 лет. Поэтому принимаем решение произвести расчет и выбрать трансформаторы необходимой мощности с учетом перспективы развития на 5 лет.

По данным «Центральных электрических сетей» идет тенденция увеличения мощности на 5% в год.

Тогда с учетом роста мощности через пять лет вводим коэффициент нагрузки Кнагр на который увеличиваем мощность трансформаторов с учетом перспективы развития на 5 лет. Тогда

 

Smaxпроект=Smax×Кнагр (8.1)

 

Где Smaxпроект – проектируемая мощность через пять лет, ква

Smax – максимальная мощность на самой нагруженной секции шин, ква

Кнагр – коэффициент нагрузки

 

Smaxпроект=2069×1,25=2586 ква

 

Результаты расчетов смотри в таблице 8.4

 

Таблица 8.4 Мощности трансформаторов с перспективой развития на пять лет

Время Мощность первого тр-ра летом Мощность второго тр-ра летом Мощность первого тр-ра зимой Мощность первого тр-ра зимой Мощность двух тр-ов в летний период Мощность двух тр-ов в зимний период
0 490 146 1115 205 636 1319
1 490 146 1149 205 636 1353
2 490 146 1098 208 636 1305
3 455 146 1166 208 601 1319
4 455 146 1166 208 601 1319
5 443 146 1200 208 584 1408
6 431 146 1149 208 576 1356
7 464 326 1183 208 790 1390
8 670 113 1385 174 783 1558
9 1776 253 2586 580 2025 3166
10 1730 491 2259 233 2221 2493
11 2036 1078 2422 872 3114 3295
12 1001 80 1496 205 1081 1701
13 1731 80 2295 205 1811 2400
14 2000 904 2161 759 2904 2920
15 1694 79 2061 759 1773 2820
16 1323 919 1702 201 2241 1904
17 563 676 965 218 1239 1181
18 363 96 965 221 459 1185
19 368 98 965 221 465 1185
20 504 556 980 188 1060 1168
21 470 540 913 188 1010 1100
22 554 851 926 191 1405 1117
23 419 131 843 191 550 1035

 

 Для наглядности графики нагрузки с перспективой развития показываем на реальных графиках нагрузки (смотри летние и зимние графики нагрузки трансформаторов)

Выбираем мощность трансформатора из условия:

 

Sн.т.≥0,5Sрасч (8.2)

 

Где 0,5 – коэффициент учитывающий возможность работы трансформаторов без допустимых систематических перегрузок и максимальном КПД соответствующем минимальным потерям активной энергии в трансформаторе.

Sрасч –расчетная нагрузка потребителей подсоединенных к одной секции шин.

 

Sн.т.≥0,5×2586=1293 ква

 

Принимаем к рассмотрению три варианта:

1) ТМ – 1600/35 номинальная мощность S=1600 ква потери короткого замыкания Рк.з.=16,5 кВт потери холостого хода Рх.х.=2,75 кВт

2) ТМ – 2500/35 S=2500 ква Рк.з.=23,5 кВт Рх.х.=3,9 кВт

3) исходный вариант ТМ – 6300 S=63000 ква Рк.з.=49,1 кВт Рх.х.=13,3 кВт

Проверяем трансформаторы на систематическую нагрузку.

Режим, в течение части цикла которого температура охлаждающей среды может быть более высокой и ток нагрузки превышает номинальный, однако с точки зрения термического износа (в соответствии с математической моделью) такая нагрузка эквивалентна номинальной нагрузке при номинальной температуре охлаждающей среды. Это достигается за счет понижения температуры охлаждающей среды или тока нагрузки в течение остальной части цикла.[5]

Для проверки трансформаторов на систематическую нагрузку на исходном графике нагрузки наносим прямую линию соответствующей номинальной мощности трансформатора. Верхняя часть графика, отсекаемая указанной прямой, является зоной перегрузки трансформатора.[5] Из графиков нагрузки видим, что нагрузка по секциям распределена не равномерно и даже в нормальном режиме с учетом перспективы развития трансформатор № 1 мощностью 1600 ква будет испытывать систематическую перегрузку на 61%, а допускается перегружать систематически на 50% [5]. Таким образом трансформатор мощностью 1600 ква использоваться не может. Поэтому в дальнейших расчетах используем трансформаторы мощностью 2500 и 6300 ква. Трансформаторы мощностью 2500 и 6300 ква в нормальном режиме как видно из графиков нагрузки перегрузок испытывать не будут.

Проверка трансформатора на аварийную перегрузку:

Режим продолжительных аварийных перегрузок

Режим нагрузки, возникающий в результате продолжительного выхода из строя некоторых элементов сети, которые могут быть восстановлены только после достижения постоянного значения превышения температуры трансформатора. Это не обычное рабочее состояние, и предполагается, что оно будет возникать редко, однако может длиться в течение недель или даже месяцев и вызывать значительный термический износ. Тем не менее такая нагрузка не должна быть причиной аварии вследствие термического повреждения или снижения электрической прочности изоляции трансформатора.

Режим кратковременных аварийных перегрузок

Режим чрезвычайно высокой нагрузки, вызванный непредвиденными воздействиями, которые проводят к значительным нарушениям нормальной работы сети, при этом температура наиболее нагретой точки проводников достигает опасных значений и в некоторых случаях происходит временное снижение электрической прочности изоляции. Однако на короткий период времени этот режим может быть предпочтительнее других. Можно предполагать, что нагрузки такого типа будут возникать редко. Их необходимо по возможности быстрее снизить или на короткое время отключить трансформатор во избежание его повреждения. Допустимая продолжительность такой нагрузки меньше тепловой постоянной времени трансформатора и зависит от достигнутой температуры до перегрузки; обычно продолжительность перегрузки составляет менее получаса.[5]

При проверке на аварийную перегрузку учитываем, что в аварийном режиме нет возможности отключать потребителей, так как у них нет второго питания и необходимо использовать перегрузочную способность трансформаторов на определенный период работы.

В аварийном режиме у нас в работе находится один трансформатор и соответственно вся нагрузка подстанции находиться на нем. Для этого необходимо построить другие графики нагрузки. На подстанции «Байдарка», как уже было сказано выше, зимняя нагрузка больше, поэтому для расчетов используем зимний график нагрузки в аварийном режиме и если нагрузки зимой допустимые, то соответственно и летом трансформатор перегружен не будет.

________ Прямая, соответствующая мощности установленного трансформатора 6300ква

________ Прямая, соответствующая мощности проектируемого трансформатора 2500ква

________ График нагрузки с перспективой развития

________ Реальный график нагрузки

 

Рисунок 8.5 Зимний график нагрузки в аварийном режиме

 

Из графика видим, что проектируемый трансформатор 2500 ква в аварийном режиме будет испытывать перегрузку. Для тог, чтобы определить допустима ли такая перегрузка преобразуем зимний график нагрузки в аварийном режиме в эквивалентный двухступенчатый график. Согласно литературы [5], в аварийном режиме для трансформаторов мощностью 2500 ква допускаются длительные перегрузки на 80%, а кратковременные на100%


Рисунок 8.6 Эквивалентный двухступенчатый график нагрузки

 

________ Прямая соответствующая мощности установленного трансформатора в аварийном режиме

________ Эквивалентный двухступенчатый график нагрузки соответствующий мощности проектируемого трансформатора 2500ква в аварийном режиме

________ График нагрузки с перспективой развития

________ Реальный график нагрузки

________ Прямая, соответствующая мощности проектируемого трансформатора 2500ква в аварийном режиме

 

По преобразованному графику нагрузки в двух ступенчатый рассчитываем коэффициент номинальной загрузки трансформатора.

 

 (8.3)


Где Sэ1 – эквивалентная мощность, соответствующая начальной мощности двух ступенчатого графика.

Sн.т – номинальная мощность трансформатора.

 

 (8.4)

 

Где S1 –Sn – соответствующие мощности первой ступени исходного графика.

 t1 – tn – соответствующее время первой ступени исходного графика.

 

 ква

 

Тогда

 

Определяем коэффициент аварийной перегрузки трансформатора К

 

 (8.5)

 

Где SЭ2 – эквивалентная мощность в аварийном режиме соответствующая повышенной мощности на двухступенчатом графике определяется по формуле (8.4)

 

 ква

 

Тогда

По графику определяем время действительной аварийной перегрузки tп.а. tп.а.=7

По таблице [5] находим допустимый коэффициент аварийной перегрузки.

 

К2адоп=1,8

К=1,47<К2адоп=1,8

 

Условие выполняется

Следовательно в аварийном режиме такая перегрузка допустима и ущерба от недоотпуска электроэнергии не будет.

Трансформатор мощностью 6300 ква в аварийном режиме перегрузки испытывать не будет.

Как показали расчеты на подстанции «Байдарка» есть возможность вместо трансформаторов мощностью 6300 ква использовать трансформаторы мощностью 2500.

Для того чтобы окончательно убедиться в возможности использовать трансформаторы мощностью 2500 ква приведем экономическое обоснование целесообразности замены трансформаторов одной мощности на другую.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...