Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Техническое обслуживание и ремонт подвески автомобиля




Подвеска автомобиля является одной из самых главных составляющих современных транспортных средств. Подвеска - это упругая связь рамы автомобиля либо с мостами, либо напрямую с колесами. Она смягчает удары и толчки при движении и обеспечивает контакт колес с дорогой. Специалисты рекомендуют проводить техническое обслуживание подвески не реже чем 1 раз при пробеге 10-12 тыс. км, а также при обнаружении первых признаков её неисправности. Техническое обслуживание подвески включает в себя: осмотр амортизаторов, пружин, рычагов, проверку на наличие люфтов в шаровых опорах, рулевых наконечниках, ШРУСах; проверку состояния сайлентблоков и других узлов ходовой части автомобиля; проверку ступичных подшипников; определение уровня износа тормозных колодок, дисков, барабанов, шлангов; проверку герметичности тормозной системы. Основными неисправностями подвески могут быть: износ амортизаторов, распорок, пружин шаровых шарниров, изгибы балки, верхнего и нижнего рычагов, износ верхнего и нижнего шаровых пальцев, резиновых втулок.

Признаком неисправности амортизатора является стук при проезде неровного участка дороги, автомобиль может кидать из стороны в сторону, долго раскачивать после каждого толчка. В амортизаторе изнашиваются сальники, шарнирные соединения, клапаны и пружины. Для того чтобы проверить работу амортизатора, необходимо снять его вместе с нижним кронштейном, установить вертикально на пол, зажав кронштейн ногами, несколько раз вытянуть и отпустить шток. В исправном амортизаторе сопротивление движению штока должно быть почти втрое сильнее сопротивления движению вниз. Кроме того, в близких к крайним положениях штока не должно ощущаться уменьшения сопротивления или упругости. Если такой эффект ощущается, значит, в цилиндр попал воздух. Свободное передвижение штока означает, что жидкости недостаточно. Амортизатор должен быть сухим. Утечка жидкости ухудшает его работу, вызывает стуки и скрипы. Если гайка резервуара ослаблена, необходимо ее подтянуть. Амортизатор заменяют, если обнаружена утечка жидкости, деформирован кожух. При проверке амортизатора необходимо осмотреть его верхнее и нижнее крепление. Неисправные и изношенные втулки и подушки заменяют. Если амортизаторы рессорные, необходимо смазать листы рессор. В результате длительной работы листы рессоры частично теряют упругость, изнашиваются пальцы и втулки. При неосторожной езде ломаются листы рессор. Рессору, потерявшую упругость или с поломанными листами, заменяют.

Неисправность ШРУСа (гранаты) довольно просто определить – если при повороте влево или вправо слышен хруст или щелканье, то следует заменить наружный шрус, а в зависимости от поворота определяется левый или правый. Внутреннюю гранату стоит менять, если возник хруст при прямолинейном движении.

При осуществлении замены тормозных колодок обязательно нужно менять наружные, внутренние прокладки и крышки прокладок. В процессе замены колодок новыми поршень нужно вдавливать до тех пор, пока не будет возможности установить колодки.

Проверка технического состояния пружин подвески. Если при тщательном осмотре обнаружены трещины или деформация витков, пружину нужно заменить. Для проверки осадки пружины ее трижды сжимают до соприкосновения витков, затем прикладывают к пружине нагрузку 325 кгс. Пружину сжимают по ее оси. Опорные поверхности должны соответствовать поверхностям опорных чашек на телескопической стойке. Штангу стабилизатора проверяют на деформацию и плоскостность. При незначительной деформации штангу выправляют, при значительной — заменяют. Подушки в кронштейннах крепления к кузову и к нижним рычагам подвески должны быть целыми, при износе их заменяют.

Проверяя техническое состояние шаровых шарниров, необходимо убедиться в сохранности защитных чехлов шарниров. Разрывы, трещины, отслоения резины от металлической арматуры, следы утечки смазки недопустимы. Далее проверяют, нет ли износа рабочих поверхностей шаровых шарниров, проворачивая вручную шаровой палец. Свободный ход пальца и его заедание недопустимы.

Сильный износ подшипников передних колес приводит к образованию люфтов, что сильно нарушает стабилизацию управляемых колес и усложняет вождение.. Подшипники передних колес регулируют в следующей последовательности: поднимают и устанавливают на козлы переднюю ось, снимают колесо, отвертывают колпак, расшплинтовывают и отвертывают гайки, снимают ступицы, промывают и осматривают подшипники (если есть трещина или износ, подшипники заменяют), наполняют ступицу смазкой и устанавливают на место, устанавливают шайбу и завертывают гайку до отказа, а затем отвертывают на пол-оборота. Колесо должно вращаться свободно, без заедания и не иметь люфта. После проверки гайку шплинтуют и завертывают колпак.

Билет №9

Гидромуфта, гидротрансформатор, вариатор. Назначение, принцип действия.

Гидромуфты.

Гидродинамические муфты (гидромуфты) нашли широкое применение в качестве составной части привода различных машин. Трудно назвать какую-либо отрасль промышленности и техники, в которых не использовались бы гидромуфты. В первую очередь это относится к горнорудной, химической, металлургической, нефтедобывающей и лесотехнической промышленности. Гидромуфты используются также в приводах широкого класса машин строительной, строительно-дорожной и транспортной техники.

Гидромуфты составляют неотъемлемую часть таких машин как ленточные, цепные скребковые и пластинчатые конвейеры, элеваторы, осевые вентиляторы и дымососы, питательные насосы и газовые турбины, дробилки и мельницы различных типов, роторные экскаваторы, дорожные катки, бетоносмесители, барабанные сушилки и центрифуги. Нельзя не упомянуть автомобили, трактора и железнодорожные локомотивы, в которых гидромуфты входят в состав гидромеханических коробок.

В 1910г. профессор Феттингер (Германия) предложил изъять направляющий аппарат из им же созданного гидротрансформатора. Таким образом, был сделан шаг от более сложной гидродинамической передачи к более простой, что и явилось началом создания гидромуфт. Несмотря на многообразие появившихся позднее конструкций гидромуфт, принципиально их рабочая часть сохранилась в том виде, в каком предложил ее Феттингер.

На рис.1 схематично в меридиональном сечении показана гидромуфта , имеющая ведущее лопастное насосное колесо центробежного типа 1(насос) и ведомое лопастное колесо, выполняющее функцию реактивной турбины 2(турбина). Оба колеса имеют, как правило, плоские радиальные лопатки 3 и 4. К насосу 1 присоединен вращающийся при работе корпус 5. Диски 6 и 7 насоса и турбины выполнены в виде чаш с криволинейными образующими. В сововокупности с межлопастными каналами торообразная часть полости гидромуфты, заключенная между чашами насоса и турбины, является рабочей полостью. Между торцами колес имеется небольшой осевой зазор, благодаря чему возможно вращение одного колеса относительно другого. Замкнутая полость гидромуфты заполняется рабочей жидкостью (РЖ), в качестве которой используются чаще всего минеральные маловязкие масла. В пожароопасных условиях применяются вода и водные эмульсии, а также трудновоспламеняемые синтетические масла.

В приводном блоке насос соединяется валом 8 с двигателем, а турбина валом 9 с механической передачей. При включении двигателя насос своей лопастной системой увлекает во вращение РЖ и, отбрасывая к периферии рабочей полости, направляет ее на лопатки турбины. В турбине кинетическая энергия РЖ, запасенная в насосе, преобразуется в механическую энергию вращения, необходимую для преодоления сил сопротивления движению и инерции маховых масс машины. РЖ, протекая в направлении оси вращения вдоль лопаток, воздействует на них и, отдав энергию, всасывается насосом на его наименьшем радиусе. И вновь РЖ "заряжается" в насосе новой порцией энергии. Процесс передачи и преобразования энергии от насоса к турбине происходит при работе гидромуфты непрерывно, и замкнутая циркуляция РЖ постоянно обеспечивает при этом силовую связь между колесами.

В гидромуфте (гидропередача без внешней опоры) момент на турбине всегда равен моменту на насосе, но передача энергии в ней происходит с определенными потерями, характеризуемыми в рабочем режиме значением К.П.Д. Поскольку моменты колес раны, то К.П.Д. численно равен отношению частоты вращения турбины n2 к частоте вращения насоса n1, т.е. передаточному отношению i ( i= n2/n1). Крутящий момент гидромуфты передается всегда при некотором отставании скорости турбины от скорости насоса. Это значит, что гидромуфта работает со скольжением Sг = (n1-n2)/ n1= 1-i. Скольжение отображает долю потерь мощности, идущих на нагрев РЖ и деталей гидромуфты.

Основные функциональные особенности гидромуфт.

При использовании гидромуфт привод машин приобретает целый ряд положительных свойств, из которых наиболее важными являются:
- страгивание с места с нулевыми значениями начального момента и ускорения, а также плавный разгон машин до рабочей скорости,
- предохранение приводного двигателя и механической трансмиссии от недопустимых перегрузок при резком торможении и пуске,
- возможность замены сложных электродвигателей с фазным ротором на простые и более надежные короткозамкнутые двигатели с обеспечением благоприятных условий их пуска под нагрузкой, в том числе и при большом моменте инерции машины,
- суммирование мощности нескольких двигателей, работающих на общий исполнительный орган при равномерном распределении нагрузки на эти двигатели, и возможность их поочередного запуска,
- стабильность и автоматичность срабатывания при заданном значении предельного момента и самовосстанавливаемость рабочего режима при устранении перегрузки,
- возможность гидродинамического и генераторного торможения машины, а также ее торможения противовращением при реверсировании двигателя,
- демпфирование и гашение крутильных колебаний крутящего момента и скорости вращения широкого спектра частот, имеющих место при работе многих машин.

К этому целесообразно добавить также такие особенности как высокий К.П.Д. гидромуфты (0,96-0,98), простота конструкции и настройки, отсутствие силовых пар трения, передающих крутящий момент. Изменение наполнения РЖ и введение в полость гидромуфты простого дросселирующего диска позволяют расширить диапазон передаваемой мощности.

Гидромуфты подразделяются на регулируемые и замкнутые.

Регулируемые гидромуфты предназначены, как правило, для относительно неглубокого (до 30-40%) регулирования частоты вращения ведомого вала привода. Наиболее экономичным такое регулирование является лишь для машин, у которых мощность нагрузки в процессе работы изменяется пропорционально кубу частоты вращения турбины, т.е. N2=(i3) Nн (Nн- номинальная мощность при полной скорости и n1=const.). К таким машинам относятся мощные (до15тыс.квт) центробежные насосы, турбогенераторы, вентиляторы. Менее экономичным регулирование с помощью гидромуфт является в случае, когда мощность изменяется пропорционально квадрату частоты вращения ,т.е. N2=(i2) Nн. Максимальные потери мощности Nпот. в первом случае составляют Nпот.= 0,148 Nн при i=0,666, а во втором случае 0,25 Nн- при i=0,5. Для многих лопастных машин регулирование гидромуфтой имеет ряд преимуществ по сравнению с другими способами регулирования скорости.

Гидротрансформатор

Гидродинамический трансформатор (гидротрансформатор, ГДТ) является частью гидромеханической трансмиссии, которая на современных автомобилях имеет электронное управление гидравликой и в обиходе называется автоматической.

Первый гидротрансформатор был запатентован в 1902 году Г. Феттингером и установлен через пять лет на быстроходном судне. В автомобилестроении это устройство первой применила в 1928 году шведская фирма "Лисхольм-Смит" для городских автобусов. В 1940 году гидротрансформатором стали оснащаться Oldsmobile, а затем и Cadillac.

Buick Roadmaster в 1947 году стал первым серийным легковым автомобилем с гидротрансформатором.
ГДТ находится между двигателем и автоматической коробкой перемены передач (АКПП), которая принципиально отличается устройством от простых механических. Он выполняет без вмешательства водителя две функции. Первая - функция сцепления, т. е. обеспечение передачи крутящего момента двигателя на АКПП. Вторую можно назвать функцией "дополнительной бесступенчатой коробки передач". Это образное выражение можно применить, исходя из особенностей работы гидротрансформатора, который, изменяя передаваемый им крутящий момент, позволяет увеличивать передаточные числа АКПП (см. "Работа ГДТ на автомобиле").

Устройство ГДТ

Схематично ГДТ (см. рисунок) можно представить в виде трех лопастных колес (насосное, турбинное и колесо реактора), вращающихся соосно и находящихся в одном корпусе (фото 1), заполненном рабочей жидкостью.
Насосное колесо (насос) жестко соединено с корпусом ГДТ, который приводится во вращение коленчатым валом двигателя.
Турбинное колесо (турбина) имеет шлицевое соединение с первичным валом коробки передач.
Колесо реактора (реактор) соединено с корпусом коробки передач через муфту свободного хода, что позволяет ему быть неподвижным или вращаться относительно насоса и турбины в зависимости от режима работы ГДТ.
Рабочая жидкость - жидкость для гидромеханических трансмиссий, нагнетаемая специальным насосом (не путать с насосным колесом) во внутреннюю полость корпуса ГДТ.

Принцип работы ГДТ

Коленчатый вал двигателя вращает корпус гидротрансформатора, который жестко связан с маховиком. Насосное колесо, конструктивно объединено с его корпусом и всегда имеет число оборотов, равное оборотам двигателя.
При вращении коленчатого вала насосное колесо начинает вращаться вместе с жидкостью, полностью заполняющей корпус ГДТ. Лопасти насосного колеса устремляют рабочую жидкость на лопасти турбины. Вслед за движением насосного колеса, под действием жидкости начинает двигаться турбинное. При малом числе оборотов происходит отставание вращения турбинного колеса от насосного. По мере увеличения числа оборотов проскальзывание уменьшается, к.п.д. ГДТ возрастает.
Между насосным и турбинным колесами расположен реактор. На современных моделях ГДТ он устанавливается на обгонной муфте, которая позволяет расклинивать его (см. устройство) и тем самым еще больше увеличивать к.п.д ГДТ.
Жидкость, от насосного колеса попадая через лопасти турбины на реактор, может передать больший момент, чем развивает двигатель. Этот эффект и определил название гидротрансформатора, т.е. он трансформирует (передает, усиливает) крутящий момент. Неподвижный реактор нужен только до тех пор, пока скорость вращения турбины отстает от скорости вращения насосного колеса на 15-25%. При выравнивании скоростей колес реактор становится помехой и снижает к.п.д. ГДТ, поэтому муфта свободного хода разблокирует его и он будет вращаться.

 

Работа ГДТ на автомобиле

Сложные гидродинамические процессы, протекающие внутри ГДТ, на автомобиле (упрощенно) проявляют себя следующим образом.
Водитель переводит рычаг управления АКПП в положение движения. Включается соответствующая передача (планетарный ряд), имеющая фиксированное передаточное отношение.
До начала движения и в момент троганья происходит интенсивное взаимное проскальзывание насосного и турбинного колес гидротрансформатора. Эта его конструктивная особенность обеспечивает бесступенчатое увеличение передаточного отношения между двигателем и первичным валом АКПП (и, соответственно, включенной в данной момент передачей) в зависимости от интенсивности разгона и дорожных условий. Режим установившего движения автомобиля сопровождается выравниванием скоростей вращения насоса и турбины и снижения общего передаточного отношения ГДТ и АКПП. Точно так же ГДТ "отслеживает" изменение условий движения на других передачах. Поэтому его иногда условно называют "дополнительной бесступенчатой коробкой передач". При работе АКПП гидротрансформатор исключает ударные нагрузки в момент переключения передач и "сглаживает" разницу их передаточных отношений.
Он обеспечивает, в определенных пределах, приспособляемость двигателя к изменению дорожных условий. На современных моделях гидротрансформаторов при установившемся движении автомобиля на повышенных передачах в АКПП (на некоторых даже на I и II) происходит полная механическая блокировка ГДТ, и он работает как обычное "сухое" сцепление, исключающее в нем потерю мощности.
При движении автомобиля детали ГДТ испытывают высокие гидравлическую и тепловую нагрузки. Последняя возникает, когда реактор не вращается. Это происходит из-за характера движения жидкости и ее внутреннего трения. Поэтому рабочая жидкость дополнительно охлаждается специальным радиатором, расположенным в передней части автомобиля вместе с радиатором охлаждения двигателя или внутри него. Неисправности радиаторов могут привести к попаданию охлаждающей жидкости в трансмиссионную, что выводит из строя ГДТ и автоматическую коробку передач. Автоматическая трансмиссия оказывает на двигатель дополнительную тепловую нагрузку, перегрев ее может привести к перегреву двигателя и наоборот.
Движение автомобиля с исправными гидротрансформатором и АКПП отличается плавностью хода и оптимальной динамикой разгона.

 

Вариатор

Количество возможных режимов при движении автомобиля бесконечно велико. Поэтому оптимальную работу двигателя можно обеспечить, если бесконечным будет и количество ступеней в коробке передач. Вариатор – единственный из существующих на сегодняшний день видов КПП позволяет бесступенчато изменять передаточное отношение между двигателем и трансмиссией. А это значит, что для каждого режима работы автомобиля (т.е. скорости и сопротивления движению) удается подобрать наиболее эффективное значение передаточного отношения, а не усредненное, как в любой другой коробке передач.Следствием постоянной работы двигателя в зоне оптимальных оборотов является высокая экономичность, снижение токсичности выхлопных газов и лучшая динамика разгона автомобилей с вариаторами. А так как передаточное отношение изменяется плавно, а не ступенчато, то такие автомобили отличаются и плавностью хода. Отсутствие рывков при переключениях увеличивает срок службы узлов трансмиссии. Вариаторы имеют небольшой вес, простую конструкцию (по сравнению с АКПП) и достаточно надежны. Так же, как и «автоматы» они избавляют водителя от «ручного» труда.Так что, имеем идеальную коробку передач? Увы, нет. Главный недостаток вариаторов состоит в том, что они фрикционные (работают за счет трения, а не зубчатого зацепления), и поэтому могут передавать ограниченный крутящий момент, при превышении которого рабочие поверхности начинают проскальзывать и интенсивно изнашиваться. А это означает, что их нельзя использовать в паре с мощными двигателями.Вариатор не любит долгой работы в режиме максимальных нагрузок. "Спортивный" стиль вождения, резкие рывки и торможения приводят к его быстрому износу. Стихия вариатора - спокойное, плавное движение.

Принцип действия

В настоящее время на автомобилях применяют два типа вариатора: клиноременной и торовый. Клиноременной состоит из двух раздвижных шкивов и натянутого между ними ремня. Один шкив соединен с двигателем, и является ведущим, второй, ведомый, - с ведущими колесами. Шкивы, как уже говорилось, раздвижные, то есть, состоят из двух половинок. Если половинки шкива сближаются, ремень выталкивается наружу, если раздвигаются, ремень проваливается внутрь. Изменение радиусов, по которым вращается ремень, происходит синхронно - когда один шкив увеличивает радиус, другой его уменьшает. В итоге плавно изменяется передаточное отношение: пока радиус ведущего шкива меньше, чем ведомого, имеем пониженную передачу; если радиусы равны - передача прямая; если же ремень на ведущем шкиве вращается по большему радиусу, чем на ведомом — получаем повышенную передачу.Почему же при такой простоте и прочих своих достоинствах вариатор стали применять на автомобилях сравнительно недавно? Проблема заключалась в резиновом ремне, который не позволял передавать большой крутящий момент. Только с изобретением металлического наборного ремня стала возможной установка вариатора на легковых автомобилях (о грузовых даже и речи не идет). Такой ремень представляет собой две металлические ленты с нанизанными на них металлическими пластинками специальной формы. Он передает усилие путём прижима звеньев друг к другу и толкания их ведущим шкивом. Ведущий шкив толкает зажатые между его дисков звенья, те толкают соседние, и так далее к звеньям, зажатым в ведомый шкив. То есть такой ремень является толкающим, а не тянущим, что позволяет передавать значительно большее усилие.В некоторых вариаторах вместо ремня применяется цепь. Принципиальных различий с ремнем нет, есть некоторые отличия. Первое - цепь передает тянущее усилие, а не толкающее. Второе – мощность передается скошенными торцами осей звеньев цепи.В торовых вариаторах вместо раздвижных шкивов применяются конусовидные диски, а ремень заменяют ролики. Один диск (ведущий) соединяется с коленвалом двигателя, другой (ведомый) — с трансмиссией. К дискам прижимаются ролики, которые могут вращаться вокруг горизонтальной оси, передавая крутящий момент, и смещаться относительно вертикальной, соприкасаясь с дисками в разных точках. Изменяя положение роликов, меняем передаточное отношение. Если ролик соприкасается с ведущим диском по малому радиусу, то с ведомым он контактирует по большому — получаем понижающую передачу. При вращении по одинаковым радиусам передача будет прямой, а если ролик прижат к ведущему диску по большему радиусу — повышающей.Торовые вариаторы способны передавать больший крутящий момент, чем клиноременные. При этом им присущи недостатки клиноременных, так как усилие передается также за счет трения. Торовый вариатор дороже, ввиду того, что для изготовления его деталей требуется высокопрочная сталь, а для смазки — специальное фрикционное масло.

Конструкция

Практические конструкции вариаторов включают в себя устройства для обеспечения плавного трогания с места, движения задним ходом, систему управления, гидронасос.В роли сцепления могут выступать либо пакет фрикционов, либо гидротрансформатор. Пакет фрикционов проще, компактнее, но по плавности включения и долговечности уступает гидротрансформатору. Поэтому такая конструкция применяется на недорогих автомобилях. Гидротрансформатор имеет большие габариты и массу, зато обеспечивает более плавное трогание, сглаживание рывков, что увеличивает ресурс работы вариатора. Кроме того, вариатор с гидротрансформатором быстрее переходит с низших передач на высшие при резком разгоне.Для обеспечения движения задним ходом применяется простая планетарная передача.Система управления состоит из блока управления, датчиков, гидросистемы управления шкивами. Получая данные об оборотах двигателя, скорости автомобиля и положении педали акселератора, блок управления определяет оптимальное для данного режима движения передаточное число. По показаниям датчиков скорости вращения первичного и вторичного валов определяется реальное передаточное отношение. При их несовпадении блок управления выдает команду гидросистеме на изменение диаметра шкивов.

Рабочее давление в гидросистеме и смазку деталей вариатора обеспечивает насос, приводимый от первичного вала. Причем давление в системе зависит не от оборотов двигателя, а поддерживается пропорциональным развиваемому крутящему моменту. Чем больше момент, тем сильнее сжимаются диски, предотвращая проскальзывание ремня. От давления, создаваемого насосом, зависит быстродействие вариатора – чем оно выше, тем быстрее изменяется передаточное отношение. Масло в системе применяется специальное, с маркировкой CVT. В качестве напоминания такая же надпись ставится на маляном щупе вариатора.Электронная система управления позволяет наделить вариатор большим перечнем дополнительных функций: адаптация к стилю вождения, экономичный или спортивный режим, «ручное» переключение передач.Последняя опция введена больше в связи с субъективным восприятием некоторыми водителями особенностей работы вариатора, чем с технической необходимостью. При резком нажатии на педаль акселератора двигатель вначале выводится на обороты, соответствующие максимальной мощности, и далее разгон происходит за счет изменения передаточного отношения вариатора. При этом мотор все время работает «на одной ноте». Водителей «с музыкальным слухом» это раздражает. Поэтому и вводится «ручной» режим с 6-8 фиксированными передачами, и тогда звук двигателя с вариатором приобретает ласкающую слух переменную тональность.Еще один нюанс конструкции вариаторных трансмиссий связан с диапазоном передаточных чисел. Прямой передаче соответствует положение, когда диаметры дисков одинаковы. Поэтому низшее и высшее передаточные числа симметричны относительно единицы. А значит, высших передач получается слишком много, а низших, наоборот, недостаточно. Чтобы компенсировать этот недостаток, увеличивают передаточное число главной передачи.

 

 





Рекомендуемые страницы:

Воспользуйтесь поиском по сайту:



©2015- 2021 megalektsii.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.