Расчет жестких аэродромных покрытий
Стр 1 из 2Следующая ⇒ Жесткие покрытия 7.3.1 Новые жесткие монолитные покрытия следует проектировать, как правило, однослойными. Двухслойные монолитные покрытия могут применяться только при технической невозможности укладки слоя бетона требуемой расчетом толщины или усилении существующих покрытий, обоснованными технико-экономическими расчетами. 7.3.2 Строительство жестких покрытий следует, как правило, выполнять из тяжелого бетона, отвечающего требованиям ГОСТ 26633 и настоящего свода правил. Допускается применять при технико-экономическом обосновании мелкозернистый бетон, отвечающий требованиям ГОСТ 26633, при этом класс прочности на сжатие при использовании его в однослойном или верхнем слое двухслойного покрытия должен быть не ниже В30. Коррозийная стойкость бетона должна быть обеспечена с учетом химической агрессивности среды и компонентов бетонной смеси. Таблица 7.3
Рисунок 7. 1 - Районирование территории Российской Федерации по требуемой морозостойкости бетона для однослойных и верхнего слоя двухслойных покрытий
Таблица 7.4
7.3.4 Требуемую толщину монолитного жесткого слоя следует определять расчетом и принимать не менее 0,16 м.
Расстояния между деформационными швами сжатия (длина плит) не должны превышать, м, для монолитных покрытий:
Нежесткие покрытия устраивают многослойными. Требуемую толщину слоев обосновывают расчетом. Минимально допускаемую толщину конструктивного слоя (в уплотненном состоянии) принимают согласно таблице 7.5. Таблица 7.5
7.5.2 Общая толщина асфальтобетонных слоев на основаниях из материалов, обработанных неорганическими вяжущими, должна быть не менее приведенной в таблице 7.6.
7.7.1 Аэродромные покрытия, как правило, следует рассчитывать на воздействие нагрузок от воздушного судна конкретного типа. Допускается проводить расчет на нормативные нагрузки, категории и параметры которых приведены в таблицах 7.9 (для самолетов) и 7.10 (для вертолетов). Таблица 7.8
Таблица 7.9
Таблица 7.10
7.7.2 Аэродромные покрытия надлежит рассчитывать по методу предельных состояний. Расчетными предельными состояниями жестких покрытий являются: бетонных и армобетонных - предельное состояние по прочности; железобетонных с ненапрягаемой арматурой - предельные состояния по прочности, раскрытию трещин и давлению на грунтовое основание; железобетонных с напрягаемой арматурой - предельное состояние по образованию трещин и давлению на грунтовое основание. Расчетными предельными состояниями нежестких покрытий являются: для покрытий капитального типа - предельные состояния по относительному прогибу всей конструкции и по прочности слоев из асфальтобетона; для покрытий облегченного типа - предельное состояние по относительному прогибу всей конструкции. 7.7.3 При расчете прочности покрытий воздействие нагрузок от различных типов воздушных судов следует приводить к эквивалентному воздействию расчетной нагрузки. В качестве расчетной нагрузки должно приниматься воздушное судно (категория нормативной нагрузки), оказывающее максимальное силовое воздействие на покрытие.
7.7.4 Покрытия аэродромов по степени воздействия нагрузок воздушных судов и несущей способности подразделяются на группы участков, в соответствии с приложением Л. Приведенные в нем схемы следует уточнять в зависимости от назначения и ведомственной принадлежности аэродромов. Расчет покрытий вертодромов следует выполнять в соответствии с требованиями для участков группы А (рисунок Л.1). Толщины конструктивных слоев покрытия обочин и укрепляемых участков, примыкающих к торцам ИВПП, надлежит рассчитывать как для участков группы Г с однократным приложением расчетной нагрузки, но принимать не менее минимально допускаемых значений для материалов конструктивных слоев. 7.7.5 При расчете аэродромных покрытий на прочность коэффициенты динамичности kd и разгрузки g f (учитывающий движение по покрытию воздушных судов с большими скоростями) для всех групп участков аэродрома следует принимать в соответствии с таблицей 7.11. 7.7.6 При расчете усиления многослойной конструкции допускается использовать в качестве расчетной модель упругого многослойного полупространства ограниченной мощности. Таблица 7.11
Расчет жестких аэродромных покрытий 7.8.1 При расчете жестких аэродромных покрытий по прочности и образованию трещин должно удовлетворяться условие md £ mu, (7.1) где md - расчетный изгибающий момент в рассматриваемом сечении плиты покрытия, определяемый в соответствии с 7.8.2, если слой (слои) основания предусматривают из неукрепленных материалов, и в соответствии с приложением М, если слой основания предусматривают из материалов, укрепленных вяжущими; ти - предельный изгибающий момент в рассматриваемом сечении плиты покрытия, определяемый в соответствии с 7.8.4. 7.8.2 Расчетные значения изгибающих моментов md, МН×м/м, на единицу ширины сечения однослойных жестких покрытий всех типов следует определять по формуле
md = mc ,max kkNkx (y), (7.2) где тс ,mах - максимальный изгибающий момент при центральном загружении плиты, МН×м/м, который вычисляется как наибольший суммарный момент, создаваемый колесами опоры воздушного судна в расчетных сечениях плиты, перпендикулярных осям х или у (рисунок 7.2), при этом должны исключаться колеса, вызывающие отрицательное значение изгибающего момента в расчетном сечении: 0156S10-05630 k - переходный коэффициент от изгибающего момента при центральном загружении к моменту при краевом загружении плиты, принимаемый равным: для бетонных и армобетонных покрытий со стыковыми соединениями или конструктивным краевым армированием - 1,2; для бетонных и армобетонных покрытий, устраиваемых без стыковых соединений и краевого армирования плит, - 1,5; для сборных покрытий из предварительно напряженных железобетонных плит - 1,0;для железобетонных покрытий с ненапрягаемой арматурой - по рисунку К.1 как для покрытий со стыковыми соединениями; kN - коэффициент, учитывающий накопление остаточных прогибов в основании из материалов, не обработанных вяжущими, и принимаемый равным 1,1 для участков группы А и МС (см. схему рисунка Л.1); для оснований из материалов, обработанных вяжущими, а также независимо от вида оснований для участков групп Б (кроме МС), В и Г следует принимать kN = 1,0; kx (y) - коэффициент, учитывающий перераспределение внутренних усилий в ортотропных плитах покрытий с различной жесткостью Вх и Ву в продольном и поперечном направлениях и принимаемый по графику рисунка К.2; для бетонных, армобетонных и железобетонных покрытий с ненапрягаемой арматурой kx (y) = 1; т 1 - изгибающий момент от действия колеса, центр отпечатка которого совпадает с расчетным сечением, МН×м/м:
тх (у) i - изгибающий момент, создаваемый действием i -го колеса, расположенного за пределами расчетного сечения плиты, МН×м/м:
Fd - расчетная нагрузка на колесо, МН:
- единичный изгибающий момент от действия колеса, центр отпечатка которого совпадает с расчетным сечением, определяемый по таблице К.1 в зависимости от приведенного радиуса Re - радиус круга, равновеликого площади отпечатка пневматика колеса, м:
ра - внутреннее давление воздуха в пневматиках колес, МПа; l - упругая характеристика плиты, м:
Fn - нагрузка на основную опору расчетного воздушного судна (или нормативная нагрузка), МН; пk - число колес на опоре; kd, g f - коэффициенты соответственно динамичности и разгрузки, определяемые по таблице 7.11; Ks - расчетный коэффициент постели однородного грунтового основания, МН/м3, определяемый в соответствии с приложением В. Для многослойного грунтового основания, а также для искусственного основания, не обработанного вяжущим, в расчет вводится значение эквивалентного коэффициента постели Kse, определяемого в соответствии с приложением Г; , - единичные изгибающие моменты, действующие в расчетном сечении плиты, от воздействия i -го колеса опоры воздушного судна, определяемые по таблице К.2 в зависимости от координат x = yi / l и h = xi / l, где yi, xi - координаты приложения силы Fd, считая за начало координат пересечение рассматриваемых сечений (см. рисунок 7.2); В - жесткость сечения плиты покрытия, МПа×м4/м, отнесенная к единице ширины ее сечения и определяемая в соответствии с 7.8.3. Примечание - Для многоколесных опор необходимо путем пробных расчетов найти колесо, под центром отпечатка которого возникает максимальный изгибающий момент.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|