Вычисления степеней окисления
ФАРМАЦЕВТИЧЕСКИЙ ФИЛИАЛ ГБОУ СПО «СВЕРДЛОВСКИЙ ОБЛАСТНОЙ МЕДИЦИНСКИЙ КОЛЛЕДЖ» Кафедра химии и фармацевтической технологии
ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ Учебное пособие для самостоятельной работы студентов по учебной дисциплине «Общая и неорганическая химия» Екатеринбург Пособие для самостоятельной работы студентов по общей и неорганической химии / сост. преподаватель химии, кандидат химических наук А.И. Серебрякова. – Екатеринбург; Фармацевтический филиал ГБОУ СПО «СОМК», 2012. – 34 с.
Рецензент: Л.И. Русинова доцент УГТУ - УПИ, кандидат химических наук
Учебное пособие: «Окислительно-восстановительные реакции» содержит несколько разделов. В нем отражены вопросы, которые знакомят студентов с понятиями окислителей и восстановителей, степени окисления, процессами окисления и восстановления, методами уравнивания. Материал тесно связан с профессиональной направленностью: с применением ОВР в анализе лекарственных средств. Данное пособие позволяет подготовиться изучению учебной дисциплине Аналитическая химия и ПМ 02 МДК 02.02. «Контроль качества лекарственных средств».
Учебное пособие рассмотрено на заседании кафедры химии и фармацевтической технологии (протокол № 2 от 07 сентября 2012 года)
СОДЕРЖАНИЕ 1. Введение. Что такое ОВР? 4 2. Вычисление степеней окисления 6 3. Процессы окисления и восстановления. Восстановители и окислители 9 4. Классификация ОВР 11 5. Составление уравнений ОВР 11 А) Метод электронного баланса 11 Б) Метод ионно-электронный (полуреакций) 18 6. Превращения некоторых ионов и веществ в ОВР в различных средах 25
7. Вычисление эквивалента вещества в ОВР 28 8. Литература 31
ВВЕДЕНИЕ
Окислительно - восстановительные процессы принадлежат к числу наиболее распространенных химических реакций и имеют большое значение в теории и практике. При анализе лекарственных средств, как и многих других веществ, используются количественные методы, в основе которых лежат окислительно-восстановительные реакции (ОВР). Это методы перманганатометрии, йодометрии, броматометрии и др. Вот некоторые реакции, которые лежат в основе этих методов или используются для определения содержания количества веществ:
- метод перманганатометрии:
а) 5H2C2O4 + 2KM n O4 + 3 H2SO4 à 2 MnSO4 +K2SO4 +3H 2O
б) 5H2O2 + 2KM n O4 + 3 H2SO4 à 2 MnSO4 +K2SO4 + 5О2 +8H 2O
- метод иодометрии:
в) 2 Na2S 2O3 + I2 à 2 NaI + Na2S4O6 тетратионат натрия г) K2Cr2O7 + 6 KI + 7H2SO4 à Cr2(SO4)3 + 4 K2SO4 + 3I2 + 7 H2O
- метод броматометрии:
д) KBrO3 + 6KI + 6HCl à KBr + 6KCl + 3I2 + 3 H2O
е) KBrO3 + 5KBr + 6HCl à 6KCl + 3Br2 + 3 H2O
- метод нитритометрии:
ж) 2HNO2 + 2HI→ I2 +2NO + 2H2O
Окисление-восстановление - один из важнейших процессов природы. С ним связаны дыхание и обмен веществ, гниение и брожение, фотосинтез, нервная деятельность человека и животных. Их можно наблюдать при сгорании топлива, в процессе коррозии метaллов и при электролизе. Они лежат в основе металлургических процессов и круговорота веществ в природе; с их помощью получают кислоты, щелочи и многие другие ценные продукты. Реакции окисления-восстановления лежат и в основе многих методов лабораторной диагностики. Вы в своей будущей учебе и работе будете постоянно встречаться с ОВР, начиная с мытья лабораторной посуды и кончая проведением самых различных видов анализа.
Что такое ОВР? Все многообразие химических реакций можно разделить на 2 типа: 1. Реакции, протекающие без изменения степени окисления атомов элементов, входящих в состав реагирующих веществ.
Например: +1 -1 +1 +5 -2 +1 -1 +1+5 -2 KCl + АgNОз = AgCl + КNОз
+4 -2 +2 -2 +4 -2 МgСОз = MgO + СО2
2. Реакции, сопровождающиеся изменением степени окисления атомов элементов, входящих в состав реагирующих веществ. Например:
0 +2 +6 -2 +2 +6 -2 0
Fе + Cu SO4 = Fe S О4 + Си
-3 +1 +3 -2 0 +1 -2 N H4 N O2 = N 2 + 2H 2 O
Сравните степени окисления подчеркнутых элементов.
Реакции, протекающие с изменением степеней окисления атомов, входящих в состав реагирующих веществ, называются окислительно- восстановительными.
С современной точки зрения: изменение степени окисления связано с оттягиванием или перемещением электронов. Поэтому, наряду с приведенным выше определением, можно дать такое определение ОВР:
окислительно-восстановительными называются реакции, в которых происходит переход электронов от одних атомов, молекул, ионов к другим.
Задание для самоконтроля № 1: Среди приведенных ниже уравнений выберите уравнения ОВР. 1) Zп(ОН)2 + 2NaOH= Na2 ZnО2 + 2Н2 О 2) 4НNОз + Сu = Сu(NО)2 + 2NО2 + 2Н2 О 3) Fe + 2НСI = FeСI2 + Н2 4) СаСОз = СаО + СО2 5) MnО2 + HCl = Cl2 + МnC12 + Н2 О
Если Вы забыли... что такое степень окисления и как ее найти: степень окисления характеризует состояние атома в молекуле; степень окисления - это условный заряд атома в молекуле, вычисленный исходя из предположения, что молекула состоит только из ионов. Или … - это условный заряд, который приобретает атом при условии полного смещения пары электронов ковалентной связи к более электроотрицательному атому. Степень окисления может принимать отрицательное значение, если атом принял электроны (-1, -2 и т.д.); - положительное значение, если атом отдал электроны (+1, +2 и т.д.) - нулевое значение, если смещения не произошло и электронные пары, в равной мере принадлежат обоим атомам (обычно нулевая степень окисления присуща простым веществам - Н2, Р4, Fe, Na, S, O2 с ковалентной неполярной связью или металлической - Fe, Na и др.).
ВЫЧИСЛЕНИЯ СТЕПЕНЕЙ ОКИСЛЕНИЯ 1. Степень окисления (C.О.) кислорода в большинстве соединений равна -2 за исключением пероксидов (Н2О2) и дифторида кислорода (OF2). С.О. в них равна -1 и +2, соотвтственно. 2. С.О. водорода равна +1 за исключением гидридов металлов (NaH, CaH2 и др. С.О.= -1).
3. Алгебраическая сумма степеней окисления в молекуле всегда равна 0, а в сложном ионе - заряду иона. 4. Степень окисления элемента в простых веществах принимается за 0.
Алгоритм вычисления степени окисления в бинарной (состоящей из двух химических элементов) молекуле: пример: MnO2
Вывод: степень окисления марганца в MnO2 равна + 4. · В оксидах с нечетным числом атомов кислорода степень окисления элемента (если произвести расчет) равна этому нечетному числу («перекрестное» правило) со знаком +: х -2 Э2О3
Э2О3 2∙х = - [3 ∙ (-2)]
- [3 ∙ (-2)]
Алгоритм вычисления степени окисления в сложной молекуле: пример: H2Cr2O7
Вывод: степень окисления хрома в хромовой кислоте равна +6.
Алгоритм вычисления степени окисления в сложном ионе: пример: РO43-
Вывод: степень окисления фосфора в ортофосфат - ионе равна +5.
• Если вы вычислили степень элемента в составе сложного аниона или сложного катиона один раз, а этот ион встречается в уравнении повторно, например H3PO4 и Ca3(PO4)2, то степень окисления у фосфора будет та же самая +5.
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|