Получены экспираторные кривые поток-объем и давление-объем (рис. 8-12 и рис. 8-13).
Получены экспираторные кривые поток-объем и давление-объем (рис. 8-12 и рис. 8-13). На кривой поток-объем можно увидеть быстрое уменьшение объемной скорости потока вскоре после начала выдоха. Это обстоятельство обусловлено компрессией ВП положительным плевральным давлением, создаваемым экспираторным усилием (гл. 2, 4 и 6). Во время вдоха компрессия ВП не возникает, а инспираторный поток ограничивается давлением, развиваемым мышцами вдоха. Кривая смещена вправо вследствие перерастяжения (гиперинфляции) легких. Кривая давление-объем смещена кверху и влево, что указывает на повышенную растяжимость, обусловленную деструкцией легочной ткани и потерей эластической отдачи. Рис. 8-11. Случай 3: объемы легких. Данные пациента выражены в процентах от должных величин Выполнен электрофорез белков сыворотки. Данное исследование проведено для определения возможности агантитрипси-новой недостаточности (гл. 6). Оно выявило отсутствие агглобулиновой полосы спектра. Уровень at-антитрипсина составил 7 ммоль/л (норма 20—55 ммоль/л). ссгантитрипсиновая недостаточность является рецессивно наследуемой генетической болезнью. Она проявляется циррозом в детском возрасте или преждевременной эмфиземой в молодости. Эти фенотипические признаки обычно не встречаются у одного и того же больного. Несмотря на то, что эмфизема наблюдается далеко не у всех пациентов с ссгантитрипсиновой недостаточностью, курение значительно увеличивает частоту клинически отягощенных форм течения этой болезни. Рис. 8-13. Случай 3: кривая давление-объем в сравнении с кривой здорового человека Рис. 8-12. Случай '3: кривая экспираторный поток выдоха-объем и сравнении с должной
Часть II Обмен газов и их транспорт Обмен газов в легких Майкл А. Гриппи Предыдущие главы были посвящены механическим свойствам ВП и легочной паренхимы, определяющим движение газа в альвеолы и обратно. Газообмен через альвеолярно-капиллярную мембрану, т. е. поглощение кислорода и выделение двуокиси углерода, является решающим процессом для обеспечения тканевого метаболизма. В данной главе рассматривается движение кислорода и двуокиси углерода через алъвеолярно-капиллярную мембрану, в плазме и в эритроцитах. После краткого обзора основных принципов физики газов дается описание их диффузии и диффузионной способности легких. С позиций патофизиологии освещаются нарушения диффузионной способности легких. Основные представления Знание основных принципов физики газов необходимо для понимания обмена кислорода и двуокиси углерода в легких. Стержнем этих представлений являются фракционная концентрация и парциальное давление (рис. 9-1). Фракционная концентрация газа Кинетическая энергия всех молекул атмосферного газа создает атмосферное или барометрическое давление (Рв). Рв меняется обратно пропорционально высоте над уровнем моря (на уровне моря Рв равно 760 мм рт. ст. ). Это давление является фактической или абсолютной величиной, а не относительной> как в случае давлений, рассмотренных в гл. 2. Давления плевральное, альвеолярное и в ВП обычно выражаются относительно атмосферного и известны как манометрические давления. При рассмотрении этих давлений атмосферное давление принимается равным нулю (нулевое манометрическое давление). Атмосферный воздух является смесью нескольких газов: азота, кислорода, аргона, двуокиси углерода и водяного пара. Количество аргона и двуокиси углерода очень мало, а давление водяного пара при нормальных условиях окружающей среды невелико. Поэтому в практических целях атмосферный воздух можно рассматривать как смесь 21 % кислорода и 79 % азота, т. е. Кю2 - 0. 21 и FlN2 - 0. 79, где FlO2 и F1N-, фракционные концентрации кислорода и азота соответственно.
Когда вдыхается " сухой" атмосферный воздух, он нагревается до температуры тема (37 °С) и полностью насыщается водяным паром. При этих условиях давление водяного пара становится значимым.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|