Переходные процессы в цепи переменного тока с R-L-C элементами
В тех случаях, когда требуется учесть процессы в электрическом и магнитном поле электрическая цепь содержит реактивные элементы обоих типов. Простейшим вариантом такой цепи является последовательное соединение R - L - C (рис. 1).
Возьмем производную по времени от обеих частей уравнения
Характеристическое уравнение для дифференциального уравнения (2) можно получить заменой производных по времени на pk
где Корнями этого характеристического уравнения являются
Таким образом, корни характеристического уравнения являются функцией затухания d и резонансной частоты w 0, значения которых, в свою очередь, определяются параметрами цепи R, L и C. Резистивное сопротивление R входит только в выражение для затухания и при вариации R резонансная частота будет сохраняться постоянной. Поэтому при анализе корней затухание можно считать независимой переменной, а резонансную частоту константой, т.к. эти условия можно реализовать изменением R. Из выражения (4) следует, что корни могут быть вещественными отрицательными, если d і 2, или комплексно-сопряженными, если d < 2. Для первого случая их можно представить в виде
где
где s = - d /2 и
При затухании 0 < d < 2 корни характеристического уравнения комплексно-сопряженные с отрицательной вещественной частью. В этом случае свободная составляющая решения дифференциального уравнения также будет суммой двух экспонент, но эти экспоненты могут быть объединены и решение получено в виде a (t) = A es t sin(v t +n) Эта функция представляет собой синусоиду с изменяющейся во времени амплитудой. Всякая синусоидальная функция соответствует колебаниям величины относительно среднего значения, поэтому переходный процесс в цепи называется колебательным. Вещественная часть корней характеристического уравнения s определяет скорость изменения амплитуды, а мнимая v, частоту колебаний. Следовательно, длительность переходного процесса будет зависеть только от s = - d /2. Так как s < 0, то со временем амплитуда колебаний свободной составляющей будет уменьшаться. При уменьшении затухания d абсолютное значениеs также уменьшается, что соответствует увеличению длительности переходного процесса. Максимального абсолютного значения равного s = h 1 = h 2 = - 1 (рис. 2) sдостигает в предельном режиме при d (r) 2, подтверждая сделанное ранее утверждение, что в этом режиме длительность переходного процесса минимальна.
Для оценки скорости изменения свободных составляющих в колебательном переходном процессе можно сравнить между собой два значения, отстоящих друг от друга на время равное периоду колебаний
Величина D называется декрементом колебаний. На практике чаще применяют натуральный логарифм D называемый логарифмическим декрементом колебаний
Как и следовало ожидать, скорость изменения свободных составляющих в колебательном переходном процессе зависит только от затухания электрической цепи. Частота колебаний свободных составляющих тока и напряжений при изменении затухания также изменяется. При увеличении затухания она стремится к нулю (рис. 2), а при уменьшении к резонансной частоте цепи. При отсутствии затухания в цепи будет протекать переменный синусоидальный ток с частотой w0.
Рассмотрим теперь процесс подключения цепи рис. 1 к источнику постоянной ЭДС E. Емкость C при этом может быть полностью разряжена или заряжена до напряжения U 0, которое с помощью коэффициента - µ < c < +µ можно представить через ЭДС источника в виде U 0 = cE. При c < 1 ток в цепи после замыкания ключа будет протекать в направлении показанном сплошной стрелкой. Установившееся значение тока в цепи будет равно нулю, а установившееся значение напряжения на емкости - ЭДС E. В общем случае напряжение на емкости при переходном процессе равно
а ток в цепи Постоянные интегрирования A 1 и A 2 нужно определить из начальных значений тока и напряжения на емкости в момент коммутации, пользуясь тем, что uC (0-) = U 0 = cE = uC (0+) = E + A 1 + A 2 и i (0-) = 0 = i (0+) = C(p 1 A 1 + p 2 A 2). Отсюда A 1 = E (1- c) p 2/(p 1- p 2) и A 2 = - E (1- c) p 1/(p 1- p 2). Подставляя полученные значения в выражения для напряжения на емкости и тока получим
Если в выражения (7) и (8) подставить корни характеристического уравнения из выражения (5), то для апериодического процесса напряжение на емкости и ток в цепи будут
На рис. 3 а) приведены эти кривые при относительном начальном значении напряжения на емкости c = 0.5. В качестве базовых значений для напряжения принята ЭДС E, а для тока E (1- c)/[ Lw 0(h 1- h 2)]. Для тока также построены быстро и медленно затухающие составляющие экспоненты i s и i l (i =i s +i l). Выражения (7) и (8) получены без введения каких-либо ограничений на корни характеристического уравнения. Поэтому для нахождения решения при колебательном процессе (d <2) можно подставить корни из выражения (6), а затем преобразовать полученную сумму экспонент с комплексными показателями по формуле Эйлера. В результате мы получим выражения для напряжения на емкости и тока в цепи в виде
где y = arctg(v /s) = arctg(2p /J). На рис. 3 б) приведены кривые колебательного переходного процесса при том же относительном начальном значении напряжения на емкости c, что и при апериодическом процессе (они построены на рисунке пунктиром).
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|