Первично-активный транспорт. Вторично-активный транспорт. Эндоцитоз и экзоцитоз
Первично-активный транспорт Действие пассивного транспорта через мембрану, в ходе которого ионы перемещаются по их электрохимическому градиенту, должно быть сбалансировано их активным транспортом против соответствующих градиентов. В противном случае, ионные градиенты исчезли бы полностью, и концентрации ионов по обе стороны мембраны пришли бы в равновесие. Это действительно происходит, когда активный транспорт через мембрану блокируют охлаждением или путём использования некоторых ядов.
Вторично-активный транспорт Существуют системы транспорта через мембраны, которые переносят вещества из области их низкой концентрации в область высокой концентрации без непосредственного расхода энергии метаболизма клетки (как в случае первично-активного транспорта). Такой вид транспорта называется вторично- активным транспортом .
Эндоцитоз и экзоцитоз Макромолекулы - белки и нуклеиновые кислоты - не могут проникнуть через плазматическую мембрану с помощью механизмов транспорта, рассмотренных выше, из-за своих больших размеров. При трансмембранном транспорте больших молекул сама плазматическая мембрана подвергается согласованным перемещениям, вследствие которых часть жидкой внеклеточной поглощается ( эндоцитоз ) или часть внутренней среды клетки выделяется (экзоцитоз ). Эксперимент: кнаружи поверхности мембраны облицеров. соли К+ Þ выход ионов К+ из клетки затруднен Þ величина ПП? Результат: ампликация солей К+ к наружной поверхности мембраны приводит к снижению величины ПП, степень снижения оказалась пропорциональной концентрации К+ в облицеров. растворе. Вывод: К+ имеет основное значение в генерации ПП.
Если удалить Na+ или изменить его концентрацию во внеклеточной жидкости, это не толко не снизит величину ПП, но даже приведет к небольшой дополнительной поляризации мембраны Na+ не играет существенной роли в генерации ПП. Прямые определения концентрации К+ в клетке и окружающей среде показали хорошее соотношение с теоретически рассчитанными значениями ПП. После Бернштейна данные подтверждались. Джерард и Фурузава, 1930 г. Работали на нервах краба в условиях гипоксии и апоксии (полное отсутствие О2). ПП прогрессивно снижался и, наконец, исчез в нормальном целостном участке нерва. Вывод: энергия, необходимая для генерации ПП берется из окислительных процессов. Ходжкин и Хаксли разработали в 30х годах ХХ в., используя микроэлектродную технику на гигантских аксонах кальмара. ПП –50 мВ. При возбуждении генерации ПД амплитуда до 100 мВ. С позиции теории Берштейна. При возбужедении растет проницаемость мембраны для всех ионов. При этом происходит перераспределение этих ионов в сторону выравнивания концентрации внутри и вне клетки, поэтому ПД = ПП (» –50 мВ) Þ кризис мембранной теории Берштейна. 1. Клеточные мембраны обладают избирательной проницаемостью не только к ионам состоянии К+, но и к Na+ и к другим. 2. Эти виды ионной проницаемости обнаруживают самостоятельную изменчивость в зависимости от функционального состояния клетки. В мембране диэлектриком явлется липидная фаза (конденсатор), чтобы зарядить конденсатор до –75 мВ на 1 мм2 должно находиться 5000 пар ионов. В генерации ПП участвует К+, концентрация внутри клетки в 20 раз выше Þ концентрационный градиент для внутрь клетки (так как во внеклеточной среде концентрация ионов Na+ в 5-15 раз больше, концентрация Сl– вне клетки в 20-100 раз больше. Чем больше проницаемость мембраны для иона, тем больше в клетку вносится данного иона. Р К+: Р Na+: Р Сl– = 1: 0, 04: 0, 045 Уравнение Гольдмана: Em = RT/F * ln (PК+*[К+]out+ PNa+*[Na+]out+ PCl–*[Cl–]out)/(PК+*[К+]in+ PNa+*[Na+]in+ PCl–*[Cl–]in)
1. Объясняется поворотом диполя на 1800. 2. Теория альтерации Германа. При возбуждении возникает избыток кислых продуктов, которые несут отрицательны заряд, что приводит к разности потенциалов между возбужденным и невозбужденым учаском. 3. Мембранная теория Берштейна. В возбужденном участке мембраны резко увеличивается проницаемость для всех ионов, концентрации ионов смешиваются и участок становится электронейтральным. 4. Ходжкин и Хаксли. Рост проницаемости мембраны для ионов в месте воздействия. При возбуждении электропроницаемость мембраны увеличивается примерно в 500 раз. Max увеличивается проницаемость мембраны для Na+ (отсюда Na-теория ПД). Na+ свободно проходит внуть клетки. При возбужедении электро-химическое равновесие определяется потенциалом Na+. Равновесный потенциал для К+ = –97 мВ, для Na+ = +50 мВ. При возбужедении мембрана перезаряжается. Положение обратной активации и инактивации Na+-каналов, Na+-канал может активироваться (открываться) при определенных значениях потенциала. Причина активации Na+-каналов – деполяризация мембраны, чем больше деполяризация, тем больше проницаемость мембраны для Na+. Зависимость близка к линейной в подкор уровне; как только мембрана достигнет критического уровня деполяризации – зависимость нелинейная, лавинообразный вход Na+ в клетку. 1). Для объяснения реполяризации используется положение об инактивации Na 2). Рост К+ проницаемости мембраны. Не столь значителен, как для Na+ ( в 5-15 и 500 раз соответственно). Проницаемость для К+ развивается медленнее, чем для Na+. Ионы К+ в этой ситуации будут выходить наружу и выносить заряд. 3). Механизм активного транспорта, представленный K Эксперименты Ходжкина и Хаксли. Гигантский аксон кальмара. Из внеклеточной среды были удалены 2/3 Na+. При этом амплитуда ПД снизилась » на 50%. Замена внутриклеточного Na+ на другие ионы приводит к некоторому росту ПД. Замена ½ внутриклеточного К+ на Na+ приводит к значительному снижению ПД. метод Петч-Клемпинга. С его помощью можно зафиксировать на длительное время значение мембранного потенциала на любом желаемом уровне. Это делается с помощью внешнего генератора напряжения 1. Подпороговая область: Слабое изменение мембранного потенциала, суммарный ионный ток направлен от клетки наружу, так как поток К+, выходящий из клетки, уже усиливается из-за удаления мембранного потенциала от равновесного потенциала для К+. Входящий ток Na+ еще слаб, так как рост Na+-проницаемости пока невелик. Однако с развитием деполяризации Na-ый поток постепенно нарастает.
2. Критический уровень деполяризации: В этот момент суммарный ионный ток через мембрану равен нулю, так как встречные токи ионов Na+ и К+ уравновешивают друг друга. Даже небольшая дальнейшая деполяризация приводит к росту входа Na+-тока в сотни раз. 3. Во время фазы деполяризации резко увеличивается Na+-проницаемость и суммарный мембранный ток, направленный внутрь клетки. Выходящий К+-ток растет медленнее и становится заметным только к моменту пика потенциала.
В момент пика потенциала большинство Na+-каналов инактивированны, а К+-ток max. Поэтому суммарный мембранный ток – выходящий. В состоянии покоя у наружного отверстия Na+-канала находится Са2+, который электростатически тормозит проникновение Na+ в канал. При возбуждении наружная поверхность мембраны заряжена отрицательно, при этом Са2+ уходят со своих мест, вход открывается и Na+ входит в клетки. Инактивация: по ходу деполяризации узкие Na+-каналы могут закупориваться Na+. Во многих каналах есть воротные белки (могут менять свое местоположение под влиянием изменения потенциала). В состоянии покоя активационный белок закрыт, а инактивационный открыт. При возбуждении открывается активационный белок в момент закрывания инактивационного белка. В конце реполяризации белки так же закрываются и потом открываются (исходное состояние). 1. Начальная ТВ, которая составляет 2-3% от всей ТВ и приходится непосредственно на период возбуждения. 2. Задержанная ТВ » 97% всей ТВ. Если подать серийный импульс на нерв краба, то задержанную ТВ можно зафиксировать в течение 25-30 минут. Возбуждения в тканях уже нет, но ТВ имеет место. 3. Утечка тепла при работе Na. Хилл разрабтал чувствительную теплоэлектрическую методику, которая позволяла фиксировать теплообразование в течение 20 мс. Эксперименты при О0 С. Начальную фазу теплопродукции делили на 2 периода: позитивная и негативная начальная теплопродукция. При О0 С для нерва краба позитив в начальные 20 мс = 14 мк кал. В течение последующих 150 мс » 85% тепла поглощается нервной тканью обратно (12 мк кал). Позитивная начальная теплопродукция: причина: химические процессы, обуславливающие изменение проницаемости мембраны. При возбуждении в клетку поступает Na+ и смешивается с К+ и наоборот. Должно образовываться тепло. Это тепло покрывает до 50% позитивной начальной теплопродукции. Негативная начальная теплопродукция: химические реакции в этот период могут быть эндотермическими. Негативная теплопродукция не является обязательной. В 1885 г. Герман предложил теорию малых токов. Осуществляется последовательно между участками волокна. В участке, соседнем с возбужденным будет наблюдаться выход электрического тока. Кабельная теория нервного волокна: нервное волокно внутри содержит проводящую среду, оболочка невного волокна имеет слой, который плохо проводит возбуждение. Нервное волокно омывается внеклеточной жидкостью, которая проводит электрический ток. В состоянии покоя внутриклеточная среда имеет избыточный отрицательный заряд. Сила тока меняется с расстоянием от возбужденного сегмента, декремента.
1. Тема 7: Электрические и магнитные свойства тканей и окружающей среды. 2. Курс: первый семестр: первый 3. Продолжительность лекции: 1 час 4. Контингент слушателей: студенты 5. Учебная цель: изучение электрические и магнитные свойства тканей и окружающей среды 6. Иллюстративный материал и оснащение: интерактивная доска 7. Подробный план: 1) Процессы, происходящие в тканях под действием электрических токов и электромагнитных полей. 2) Частотная зависимость порогов ощутимого и неотпускающего токов. Пассивные электрические свойства тканей тела человека. 3) Эквивалентные электрические схемы живых тканей. Полное сопротивление (импеданс) живых тканей, зависимость от частоты. 4) Электрический диполь. Электрическое поле диполя. Токовый диполь. Электрическое поле токового диполя в неограниченной проводящей среде. 5) Представление о дипольном эквивалентном электрическом генераторе сердца, головного мозга и мышц. Модель Эйнтховена. Генез электрокардиграмм в трех стандартных отведениях в рамках данной модели. 8. Методы контроля знаний и навыков: традиционные методы контроля. 9. Литература: см. в приложении.
Конспект лекции
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|