Радиационные воздействия их характеристика
Микроэлементы и интегральные микросхемы, находящиеся в зоне воздействия радиоактивных излучений, могут существенно изменять свои параметры и выходить из строя. Это происходит вследствие изменения физических и химических свойств материалов и (или) деградации параметров изделий под действием излучения. Излучения возникают в результате естественных или искусственных радиоактивных распадов веществ и некоторых физических процессов в космосе. Поскольку радиоактивные излучения, проникая в толщу материала, вызывают в нем ионизацию, то часто они называются ионизирующими. Радиоактивные излучения подразделяются на корпускулярные и квантовые. Первые представляют собой потоки быстрых элементарных частиц (нейтронов, протонов, ядер атомов химических элементов, бета-, альфа- и других частиц), вторые — электромагнитные ионизирующие излучения (гамма-и рентгеновское). Нейтронное и гамма-излучения, образующиеся в результате реакций деления, принято называть проникающим излучением. В процессе взаимодействия с материалами происходит упругое или неупругое рассеяние нейтронов и их энергия постепенно уменьшается, приближаясь к энергии теплового движения атомов и молекул среды, равной примерно 0,025 эВ. Такие нейтроны называют тепловыми. Тепловой нейтрон будет блуждать в веществе до тех пор, пока его не захватит одно из ядер атомов, в результате чего образуется изотоп исходного элемента, а избыток энергии ядра излучается в виде гамма кванта. Этот тип взаимодействия называется радиационным захватом. Вероятность различного типа взаимодействий нейтронов с ядрами зависит от их энергии, поэтому нейтроны условно разделяются на три группы: быстрые нейтроны с энергией от 500 кэВ до 10 МэВ, промежуточные нейтроны с энергией от 0,5 эВ до 500 кэВ и тепловые нейтроны с энергией менее 0,025 эВ. Для быстрых нейтронов доминирует упругое рассеяние. С увеличением энергии нейтронов до 10 МэВ растет вероятность неупругого рассеяния, которое становится доминирующим при 20 МэВ. Для промежуточных нейтронов наиболее характерным процессом взаимодействия является неупругое рассеяние, а также радиационный захват.
Протонное излучение образуется за счет испускания ядрами атомов протонов в результате бомбардировки их заряженными частицами (нейтронами, гамма-квантами и др.). Длина пробега в веществе протонов с энергией от 1 до 1000 МэВ, зависит в основном от ионизационных потерь, т.е. от физических свойств вещества. В состав космических лучей входят протоны с энергией до 1018—1019 эВ. Излучение альфа-частиц происходит при распаде тяжелых радиоактивных ядер (урана, тория, радия и т. п.). В отличие от других элементарных частиц альфа-частицы имеют наименьшую длину пробега в материалах, поэтому они практически не воздействуют на МЭ и ИМ, вмонтированные в РЭА, защищенную кожухом, экранами или покрытиями. Длина пробега альфа-частиц в воздухе пропорциональна кубу их скорости. Излучение бета-частиц обусловлено потоком электронов и позитронов. Проникающая способность бета-излучения во много раз больше, чем альфа-частиц и протонов той же энергии. Источниками бета-частиц являются радиоактивные изотопы. Бета-частицы излучаются при ядерных реакциях и являются составной частью космических излучений. Энергия бета-частиц достигает несколько миллионов электронвольт. В космическом пространстве (за пределами атмосферы) обнаружены электроны с энергией больше 300 МэВ. Излучение гамма-квантов относится к квантовому излучению, является одной из форм проявления электромагнитного излучения и представляет собой потоки квантов (фотонов) различной энергии. Электромагнитные волны в определенных диапазонах обладают разными свойствами. Поэтому для характеристики процессов, протекающих при генерировании, распространении и поглощении электромагнитных волн, имеются специальные параметры, относящиеся лишь к одному диапазону и характеризующие специфические особенности этого диапазона. К электромагнитным радиоактивным излучениям принято относить гамма- и рентгеновские излучения. Энергия гамма-квантов соответствует длине волны короче 10-12 м. К рентгеновскому излучению относят квантовое излучение с длинами волн от 5-10-9 до 10-12 м.
Гамма-лучи обладают наибольшей проникающей способностью из всех рассмотренных видов радиоактивного излучения. Степень поглощения гамма-лучей различными веществами тем больше, чем больше их атомный номер. Проникающую способность рентгеновских и гамма-лучей принято характеризовать понятием жесткости. Менее проникающие лучи называют мягкими, а более проникающие - жесткими. Мягкое рентгеновское излучение хорошо поглощается различными материалами, трансформируя при этом свою энергию в тепловую. Количественное описание радиоактивного излучения выражается физическими единицами, характеризующими радиоактивность. Их условно можно разбить на две группы. К первой группе относятся физические параметры поля радиоактивных излучений и его воздействия на вещество. К ним относятся: поток и плотность потока частиц (квантов), кинетическая энергия излучения, спектральная плотность потока, поглощенная доза и мощность поглощенной дозы, экспозиционная доза и мощность экспозиционной дозы. Вторая группа величин служит для оценки количественного содержания радиоактивных веществ в материалах. К этим величинам относятся активность и концентрация радиоактивного изотопа в материалах или в среде. Для измерения поглощенной дозы радиоактивного излучения применяется специальная единица рад, при которой поглощается энергия, равная ~105 Дж в 10~3 кг любого вещества независимо от вида и энергии ионизирующего излучения. Поглощенная доза излучения будет зависеть от физических характеристик поля излучения и от массы облучаемого материала.
ЛИТЕРАТУРА 1. Глудкин О.П. Методы и устройства испытания РЭС и ЭВС. – М.: Высш. школа., 2001 – 335 с. 2. Испытания радиоэлектронной, электронно-вычислительной аппаратуры и испытательное оборудование/ под ред. А.И.Коробова М.: Радио и связь, 2002 – 272 с. 3. Млицкий В.Д., Беглария В.Х., Дубицкий Л.Г. Испытание аппаратуры и средства измерений на воздействие внешних факторов. М.: Машиностроение, 2003 – 567 с. 4. Национальная система сертификации Республики Беларусь. Мн.: Госстандарт, 2007 5. Федоров В., Сергеев Н., Кондрашин А. Контроль и испытания в проектировании и производстве радиоэлектронных средств – Техносфера, 2005. – 504с.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|