Пары органических растворителей
Углеводороды и их производные относятся к основным вредным выбросам нефтехимических и нефтеперерабатывающих предприятий. Мероприятия по снижению этих выбросов в атмосферу в основном направлены на устранение потерь углеводородов при хранении, транспортировании, приеме и выдаче, а также на совершенствование контроля герметизации оборудования и соблюдение технологического режима. Эти мероприятия можно разделить на 4 группы: · совершенствование организации хранения и транспортирования углеводородов нефти и газа; · совершенствование технологических процессов; · рекуперация углеводородов и их производных; · каталитический дожиг выбросов. Совершенствование организации хранения и транспортирования углеводородов нефти и газа. Сокращение выбросов углеводородов в атмосферу при хранении может быть достигнуто путем снижения их испарения из резервуаров. С этой целью: · используют резервуары с плавающей крышей или понтоном; · хранят углеводороды под слоем инертного газа; · заполняют резервуары на 95-98 %; · используют абсорбционно-адсорбционные и эжекционные методы улавливания углеводородов из их паровоздушных смесей; · совершенствуют дыхательную и предохранительную аппаратуру; обеспечивают герметичность кровли резервуаров; · наносят на наружную поверхность стальных резервуаров тепло- и лучеотражающие покрытия. Для снижения попадания углеводородов в окружающую среду при транспортировании углеводородов по трубопроводам применяют изоляционные покрытия для предотвращения коррозии (битумные и битумно-резиновые мастики, пленочные полимерные материалы), используют электрохимические методы защиты, проводят систематический контроль состояния трубопроводов, используют гасители гидравлических ударов, приводящих к авариям; внедряют средства телемеханизации.
При перевозке водным, железнодорожным и автомобильным транспортом потери возникают в результате испарения, утечек, аварий, неполного слива. Для их устранения необходим тщательный осмотр судна, железнодорожных цистерн, автоцистерн. Зарубежными фирмами разработаны различные устройства для герметизации цистерн при сливно-наливных операциях. Совершенствование технологических процессов. Пары углеводородов выделяются в атмосферу через неплотности оборудования, арматуры и фланцевых соединений, сальниковых устройств насосов и компрессоров. Поэтому большое внимание уделяют герметизации оборудования и уплотнению движущихся деталей, строгому соблюдению технологического регламента, исключению аварийных ситуаций. Рекуперация углеводородов и их производных предназначена для улавливания углеводородов из производственных или вентиляционных газов и повторного их использования. Улавливание углеводородов и их производных не только обеспечивает охрану окружающей среды, но и имеет большое экономическое значение. На долю углеводородов приходится 70 % всех вредных выбросов нефтеперерабатывающих и нефтехимических предприятий. Потери растворителей и их выбросы в атмосферу оцениваются у нас почти в 1 млн. т/год, это относится в первую очередь к таким растворителям, как ацетон, бензин, толуол, ксилолы, метилэтилкетон, низшие спирты, гептан, диэтиловый эфир, сероуглерод, хлорпроизводные углеводороды. Метод рекуперации выбирают в зависимости от концентрации паров углеводородов в воздухе. При больших концентрациях (170-250 г/м3) применяют конденсацию; при средних (140-175 г/м3) – абсорбцию; при низких (50-140 г/м3) – адсорбцию. Конденсацию осуществляют в поверхностных конденсаторах охлаждением рассолом (раствор CaCl2) до минус 10-15 °С.
Абсорбцию проводят в вертикальных аппаратах, заполненных насадкой и орошаемых сверху абсорбентом, обладающим большой поглотительной способностью, устойчивостью в процессе работы, легкостью регенерации. В качестве абсорбента используют минеральные масла с молекулярной массой 280-300. Адсорбцию осуществляют в аппаратах, заполненных твердым поглотителем (активный уголь, силикагель, алюмогель, цеолиты, пористые стекла, кремнезем и т.д.). Процесс протекает в аппаратах со стационарным слоем адсорбента, в аппаратах с «кипящим» слоем и плотным движущимся слоем поглотителя. Развитие адсорбционного метода рекуперации паров летучих растворителей в мировой практике идет, в основном, по двум направлениям. Одно связано с аппаратурным оформлением рекуперационных установок, другое – с использованием углеводородных поглотителей паров летучих растворителей. Большое внимание в последние годы уделяется углеродным материалам-поглотителям. Это различные тканевые и нетканые материалы на основе углеродных активных волокон. Преимущество волокон перед гранулированными активированными углями состоит в возможности обеспечения повышенной степени рекуперации растворителей (обычно выше 99 %); понижении пожаро- и взрывоопасности; компактности установок. Полотно ткани располагается либо перпендикулярно движению газа, либо в несколько параллельных рядов. Каталитический дожиг выбросов. При невозможности или высокой стоимости извлечения вредных веществ до необходимой степени, прибегают к каталитическому дожигу. Эффективность очистки составляет от 98 до 100 %. Типовые технологические схемы приведены на рис. 4.1 и 4.2. На рис. 4.1 приведена принципиальная технологическая схема конверсии горючих компонентов в присутствии катализатора на основе неблагородных металлов до СО2 и Н2О при температуре от 200 до 300 °С. Выбросы, поступающие на установку, подаются вентилятором 1 через теплообменник-подогреватель 2 в реактор 3, где происходит каталитическое окисление углеводородов. При необходимости выбросы дополнительно подогреваются до этой температуры в подогревателе 4 с использованием различного вида топлива.
Рис. 4.1. Технологическая схема каталитического дожига углеводородов: 1 – вентилятор; 2 – теплообменник; 3 – реактор; 4 – подогреватель
В реакторе 3 более чем 99 % всех горючих компонентов, содержащихся в выбросах, окисляются до углекислого газа и воды, при этом температура газа повышается в результате выделения теплоты. Очищенный газ, выходящий из реактора 3, проходит через теплообменник 2, подогревая газ, поступающий на очистку, и затем направляется на дальнейшее перед выбросом в атмосферу охлаждение с рекуперацией тепла. Принципиальная технологическая схема «Реверс-процесс» представлена на рис. 4.2. Установка включает в себя реактор с двумя слоями катализатора и расположенной между ними топкой, вентилятора и запорных устройств (клапанов) для управления движением газового потока. При работе установки положение клапанов периодически изменяют каждые 3-6 минут, обеспечивая прохождение очищаемого газа через слои катализатора попеременно либо нисходящим, либо восходящим потоком. Для этого одновременно открываются клапаны 1 и 4, либо клапаны 2 и 3.
Рис. 4.2. Технологическая схема «Реверс-процесса»: 1-4 - вентили
Проходя через первый, горячий слой катализатора, отходящий газ нагревается примерно до 300 °С, при этом сгорает большая часть содержащихся в нем горючих компонентов. Оставшиеся в нем горючие компоненты сжигаются при прохождении второго холодного слоя насадки. В этом процессе первый слой насадки охлаждается, а второй нагревается при поддержании максимальной температуры в центре реактора. При необходимости для поддержания требуемой температуры в центре реактора используется топка, которая необходима только в начальный период работы. На ОАО «СлавнефтьЯрославльнефтеоргсинтез» спроектирована и компактно поставлена фирмой «Джон Цинк» (Италия) установка для станции налива нефтепродуктов в автоцистерны в 1996 г., предназначенная для регенерации паров углеводородов, вытесняемых из котлов автоцистерн при наливе бензина на станции товарно-сырьевой базы (рис. 4.3). Метод очистки воздуха от паров бензина – конденсация и адсорбция на активированном угле. Регенерация десорбированных паров осуществляется абсорбцией бензином. Очищенный воздух, направляемый в атмосферу, содержит не более 35 г/м3 углеводородов.
Рис. 4.3. Регенерация паров углеводородов: 1– конденсатор; 2,3 – адсорберы; 4 – абсорбер; 6 – сборник углеводородов; 5, 9, 10, 11 – насосы; 7 – сепаратор; 8 – холодильник
Снижение выбросов на пункте налива за счет использования установки регенерация паров составляет 115 г/сек, или 2417,76 т/год. Выброс углеводородов в атмосферу с утилизацией паров составляет 2 г/сек, или 42 т/год. Проектная пропускная способность установки при концентрации паров бензина в воздухе от 10 до 65 %: 7,5 м3/мин - при пиковой нагрузке, 112,5м3 - за 15 мин работы (цикл переключения режимов ад сорбера), 1125 м3 - за 4 ч непрерывной работы, 3125 м3 - за 24 ч непрерывной работы. Уголь загружен в два аппарата по 12469 м3 в каждом. Адсорберы работают попеременно: один – в режиме очистки (режим адсорбции), другой – в режиме регенерации (режим десорбции). Переключение с режима на режим система управления УРПУ производит автоматически по временному циклу. В режиме очистки адсорберы работают под избыточным давлением до 0,105 МПа, в режиме регенерации под вакуумом – 0,01 МПа. Установка регенерации паров углеводородов компании «Джон Цинк» поставлена на предприятие в полностью автоматизированном и укомплектованном виде. Она сконструирована с учетом обеспечения высокой степени надежности и простоты эксплуатации. Для ясности в описании технологической схемы рассматривается ситуация, когда адсорбер 2 работает в режиме очистки, а адсорбер 3 – в режиме регенерации. Затем адсорбер 2 переключается на регенерацию, а адсорбер 3 – на очистку. Смесь воздуха с парами бензина, вытесняемая из котлов автоцистерн при наливе, проходит сборный бак конденсата 1, который позволяет избавить систему от сжиженных паров, а транспортные средства – от переполнения до начала адсорбционного цикла. Смесь паров бензина и воздуха поступает в нижнюю часть адсорбера 2, проходит снизу вверх слой угля и через выпускной клапан выбрасывается в атмосферу. При прохождении смеси через уголь пары бензина адсорбируются на нем, и концентрация паров на выходе из адсорбера снижается до 35 г/м3. Циклы работы адсорберов управляются контрольным компьютером и дистанционно управляемыми клапанами. Режим очистки выдерживается 15 мин. Регенерация адсорбента начинается прежде, чем уголь достигнет уровня насыщенности. Регенерация угля проводится в два этапа: десорбция углеводородов под вакуумом и последующая продувка угля атмосферным воздухом. На первом этапе удаляется большая часть углеводородов. Углеводородные пары откачиваются вакуумным насосом 11 в сепаратор 7. Концентрация углеводородов в этот момент составляет около 90 %. В качестве вакуумного насоса используется жидкоструйный насос кольцевого типа, для работы которого требуется уплотнительная жидкость (герметик). Уплотнительная жидкость представляет собой промышленный антифриз (на основе этиленгликоля), смешанный с водой. В течение последних 5 минут регенерационного цикла или при достижении остаточного давления 1 МПа производится продувка угля атмосферным воздухом, который «полирует» верхний слой угольного пласта.
Вместе с парами углеводородов в сепаратор 7 попадает и некоторое количество уплотнительной жидкости из вакуумного насоса. Сепаратор 7 разделен перегородкой – барьером на два отсека. Первый отсек является сборником этиленгликоля, откуда он насосом 10 через охладитель герметика 8 подается обратно в вакуум-насос 11. Холодильник 8 снимает с герметика перегрев от компрессии и конденсации. Бензиновый конденсат с поверхности этиленгликоля перетекает через перегородку во второй отсек сепаратора 7, который является сборником бензина. Не сконденсировавшиеся пары бензина в смеси с воздухом из сепаратора 7 попадают в колонну адсорбера 4 и смешиваются со свежим потоком бензина, который абсорбирует большее количество паров из смеси «бензин-воздух», после чего поток воздуха с небольшим количеством паров выходит через верх абсорбера и поступает в загрузочную линию адсорбера, работающего в режиме очистки. Свежий поток бензина подкачивается из резервуара с бензином 6 подкачивающим насосом бензина 9. Часть бензина поступает в верхнюю часть абсорбера 4, где используется как первичное средство абсорбции. Остальная часть поступает в охладитель герметика 8, где используется как средство теплообмена. После этого она поступает в нижнюю часть абсорбера 4 в качестве вторичного абсорбента. Оба абсорбента, содержащие восстановленный бензин, собираются в сепараторе 7. Вся собранная жидкость затем прокачивается откачивающим насосом 5 обратно в резервуар с бензином 6. Таким образом, совершенствуя технологические процессы и используя методы улавливания и рекуперации углеводородов, можно резко снизить потери органических растворителей. Диоксид углерода
Диоксид углерода наряду с кислородом является одним из основных веществ, участвующих практически во всех самых важных биологических, биосферных, технологических процессах. В настоящее время о диоксиде углерода во всем мире говорят в большей степени в связи с проблемой изменения климата из-за накопления в атмосфере парниковых газов. Наибольший вклад в России в общий объем парниковых газов вносят металлургическая (выплавка чугуна и стали) и химическая (производство аммиака и метанола) промышленности, а также предприятия топливно-энергетического комплекса (получение электроэнергии и пара на тепловых электростанциях). Методы очистки газов от диоксида углерода можно разделить на следующие группы: · Абсорбционные, основанные на достаточно большой раство-римости СО2 в полярных растворителях (вода, метанол); · Хемосорбционные, основанные на химическом связывании СО2 при взаимодействии его с соединениями щелочного характера (щелочь, этаноламин, растворы карбонатов). · Адсорбционные, основанные на адсорбции СО2 различными адсорбентами (например, цеолитами). Для очистки технологических и дымовых газов от СО2 в промышленности используются в основном циклические абсорбционные процессы. Агрегат очистки большой единичной мощности мог быть создан лишь с использованием в качестве поглотителя эффективных хемосорбционных растворов, которые обладали бы большой ёмкостью и высокой скоростью поглощения СО2. В России наиболее широко распространён метод очистки синтез-газа от СО2 водными растворами моноэтаноламина (МЭА), что объясняется сравнительно невысокой стоимостью МЭА, а также рядом уникальных свойств такой очистки, среди которых главными являются высокая скорость процесса абсорбции СО2 и практически равное нулю равновесное давление СО2 над низко карбонизированными растворами. Этот метод нашел применение на заводах, производящих аммиак и метанол, на предприятиях нефтехимической, металлургической и пищевой промышленности, где приходится очищать от СО2 и H2S большие количества природного, коксового, колошникового и дымового газов. Было установлено, что в процессе абсорбции протекают следующие три реакции: 2RNH2 +CO2 «RNH3RNHCOO, RNH2+ СО2 «RNHCOO – + Н +, RNHCOORNH3 + 2H2O + CO2 «2RNH3HCO3. Для реализации процесса в промышленности были предложены в качестве контактного устройства ситчатые барботажные тарелки с переменным уровнем жидкости на ступени контакта фаз. Десорбция СО2 в пар протекает в тарельчатом регенераторе при кипении раствора и её скорость определяется скоростью подвода тепла к жидкой фазе.
Рис. 4.4. Схема очистки газа от диоксида углерода: 1 – абсорбер с высокослойными тарелками; 2 – холодильники; 3 – регенератор с теплообменниками; 4 – конденсатор для грязного СО2; 5 – конденсатор для чистого СО2; 6 – кипятильник Оксиды серы До последнего времени для улавливания диоксида серы применяли единственный метод - сооружение высоких дымовых труб. Такой способ позволяет снизить концентрацию диоксида серы в приземном слое на территории предприятий. Кроме того, вследствие окисления диоксида серы до триоксида с последующим растворением в воде и взаимодействия с аммиаком, находящимся а атмосфере, происходит самоочищение атмосферы от диоксида серы. Продолжительность его существования в атмосфере от 5 до 120 часов. Однако из-за высокой подвижности атмосферы вредные вещества могут переноситься на значительные расстояния, выпадать с осадками на почву (кислые осадки, закисление почвы и водоемов), вызывать смог. Поэтому в настоящее время применяются различные методы очистки от ходящих газов от диоксида серы: методы нейтрализации диоксида серы, каталитические методы окисления, адсорбционные методы с выделением диоксида серы из газового потока с последующей утилизацией. Методы нейтрализации диоксида серы. Эти методы основаны на поглощении SO2 из газов растворами или суспензиями различных реагентов. Известковый метод заключается во взаимодействии диоксида серы с известняком или известью. СаСО3 + SO2 ® CaSO3 + CO2 СаО + SO2 ® CaSO3 2CaSO3 +O2 ® 2CaSO4 Преимущества метода - небольшие капитальные затраты, возможность использования технологического оборудования из некислотоупорных материалов, простота и надежность оборудования; образующийся шлам (влажный гипс) после соответствующей подготовки может использоваться в строительной промышленности. Степень очистки газа этим методом достигает 98 %. Содовый метод по химизму близок к известковому; основан на поглощении диоксида серы раствором соды с образованием бисульфита и сульфита натрия, которые после выделения из водного раствора могут использоваться как отдельные реагенты. Аммиачные методы основаны на взаимодействии диоксида серы с водными растворами сульфита аммония. SO2 + (NH4)2SO3 +H2O ®2NH4HSO3 В зависимости от способа разложения бисульфита аммония различают несколько вариантов этого метода. Аммиачно-сернокислый метод заключается в обработке бисульфита аммония серной кислотой. 2NH4HSO3 + H2SO4® 2(NH4)2SO4 + 2Н2О + SO2 Половину выделившегося диоксида серы направляют для производства серной кислоты, используемой непосредственно в процессе, а вторая половина может быть использована как товарный продукт: диоксид серы или серная кислота. В аммиачно-автоклавном методе адсорбцию диоксида серы про-водят раствором сульфит-бисульфита аммония. Отработанный раствор в этом случае разлагают в автоклаве при температуре 150-160 °С и давлении 0,5-0,6 МПа с получением элементарной серы и сульфата аммония. При этом протекает реакция 2NH4HSO3 + (NH4)2SO3 ® 2(NH4)2SO4 + S + Н2О Сульфат аммония и сера являются товарными продуктами и реагентами. Аммиачно-циклический метод заключается в поглощении диоксида серы растворами сульфит-бисульфита аммония при низкой температуре и выделении его при нагревании. Степень очистки дымового газа составляет от 90 до 95 % при содержании в нем диоксида серы 0,4 %. Магнезитовый метод основан на поглощении диоксида серы суспензией оксида магния: MgO + SO2 + 6 Н2О ® MgSO3 + 6Н2О или MgO + SO2 + ЗН2О ® MgSO3×3H2O Образовавшиеся кристаллы сульфида магния отделяют от воды центрифугированием и обжигают во вращающихся печах с получением диоксида серы и оксида магния. Оксид магния возвращают в процесс, а диоксид серы направляют на переработку в серную кислоту. Для предотвращения образования сульфата магния 2MgSO3 + О2 ® 2MgSO4 в суспензию добавляют ингибитор - парафенилендиамин. Степень очистки отходящих газов изменяется от 87 до 98 % при повышении рН среды с 5 до 7,7. Остаточное содержание диоксида серы в газах, очищенных по магнезитовому методу, составляет 0,03-0,06 %. Цинковый метод основан на поглощении диоксида серы суспензией оксида цинка. ZnO + SO2 + 2,5H2O ® ZnSO3×2,5H2O ZnO + 2SO2 +H2O ® Zn(HSO3)2 Кристаллы сульфита цинка отделяют фильтрованием или центрифугированием и разлагают при температуре 300-350 °С на воду, диоксид серы и оксид цинка. Оксид цинка возвращают в производство, диоксид серы используется как товарный продукт. Каталитические методы окисления диоксида серы. В настоящее время в нашей стране внедрен на многих предприятиях «реверс-процесс» (разработка АО «Реверс-процесс», г. Новосибирск). Этот процесс каталитической очистки промышленных газов осуществляют, изменяя направление фильтрации очищаемого газа в слое катализатора через каждые 5-100 минут на противоположное. На катализаторе происходит превращение токсичных примесей в безвредные. Выделяющееся в ходе процесса тепло служит дня нагрева очищаемого газа, что обеспечивает автотермичность процесса. Периодический реверс газового потока позволяет создать в центре слоя катализатора высокотемпературную зону реакции (300-600 °С), а торцевым слоям инерта отводится роль регенераторов тепла. Способ применяется для очистки газов от углеводородов, спиртов, растворителей и других органических примесей, оксидов серы и азота с эффективностью 95-98 %. Процесс «реверс - SO2 в SO3» можно использовать для очистки отходящих газов в производстве серной кислоты, цветных металлов, сжигания серы, обжига колчедана, переработке сероводорода и т.д. Образующийся триоксид серы абсорбируется серной кислотой или олеумом с получением концентрированной серной кислоты (рис. 4.5).
Рис. 4.5. Принципиальная технологическая схема очистки отходящих газов от оксида серы («реверс-процесс»): 1 – реактор 1-й стадии; 2 – реактор 2-й стадии; 3 – вентили; 4 – котел-утилизатор; 5, 6 – промежуточный и конечный абсорбер; I – очищенный газ; II – пар Датская фирма «Халдорф Топсе А/О» предлагает технологию каталитической десульфуризации промышленных и отходящих газов, содержащих окислы серы и сероводород с получением товарной серной кислоты. Эффективность очистки газов в процессе составляет не менее 95 % (рис. 4.6).
Рис. 4.6. Технологическая схема установки для очистки газов от сернистых соединений: 1 – теплообменник; 2 – рекуператор; 3 – подогреватель; 4 – реактор; 5 – башенный аппарат для выделения серной кислоты (конденсатор-концентратор); 6 – теплообменник
Высокоэффективная очистка газов от сернистых соединений обеспечивается путем каталитической конверсии их в триоксид серы с последующим получением товарной концентрированной серной кислоты. Процесс протекает по следующим стадиям: • каталитическое окисление сернистых компонентов 2H2S + ЗО2 ® 2Н2О + 2SO2 2SO2 + О2 ® 2SO3 • гидролиз триоксида серы SО3 + Н2О ® H2SO4 (г) • конденсация серной кислоты H2SO4 (г) ® H2SO4 (ж) Очищаемый газ последовательно подогревается в теплообменниках-рекуператорах 1 и 2 и подогревателе 3 до температуры ~ 420 °С и поступает в реактор 4, где осуществляется каталитическое окисление сернистых компонентов газа до триоксида серы. Выходящий из реактора 4 газ охлаждается в рекуператоре 2, и содержащийся в нем триоксид серы гидролизуется в газообразную серную кислоту. Если газ не содержит паров воды, в него добавляется пар, при этом температуру газа поддерживают значительно выше точки росы серной кислоты. Концентрированная серная кислота выделяется в башне 5, которая представляет собой конденсатор-концентратор. Очищаемый газ, содержащий серную кислоту, проходит по трубному пространству и охлаждается атмосферным воздухом или газом, поступающим на очистку, направляемым по межтрубному пространству. Серная кислота собирается на дне башни и через пластинчатый теплообменник-охладитель 6 откачивается в накопительную емкость. Концентрация полученной серной кислоты составляет 93-98 %. Воздух, нагретый в башне 5, используется для подогрева газа, поступающего на очистку, в рекуператоре 1 и затем направляется на смешение с очищенным газом, отходящим на выброс в трубу. Известен пиролюзитный метод окисления диоксида серы кислородом в жидкой фазе в присутствии катализатора на основе оксида марганца (пиролюзит). При этом Мn2+ окисляется до Мn3+ при наличии кислорода и одновременно окисляется SO2 4Мn2+ + ЗО2 ® 2Мn2О3 2SO2 + О2 ® 2SO3 Мn3+ окисляет диоксид серы, переходя снова в Мn2+ Мn2О3 + SO2 ® SO3 + 2MnO Жидкостно контактный метод основан на окислении диоксида серы в жидкой фазе на поверхности катализатора, например, активного угля.
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|