Приложение 2. Диаграммы направленности рассеянного поля
Стр 1 из 2Следующая ⇒
ВВЕДЕНИЕ Акустические методы довольно широко применяются в исследовательской производственной практике. Традиционными областями их приложения являются сейсмология, геофизика, дефектоскопия и методы идентификации материалов. Теоретической основой практических технологий являются результаты исследований и математические модели распространения, дифракции и отражения звуковых и упругих волн. В данной работе исследуется задача о рассеянии упругой волны на однородном цилиндрическом слое конечной толщины с бесконечной образующей. Целью этой работы является получение выражения для рассеянного поля, в том числе в бесконечности, а также получение выражений для падающей, отраженной, прошедшей волны, найти волновое поле внутри неоднородного цилиндрического слоя. В работе применяется метод сведения общих уравнений теории упругости к системе линейных алгебраических уравнений и ее разрешение методом Гаусса с выбором главного элемента. Построенные на основе полученных решений алгоритмы расчета характеристик прохождения и рассеяния упругих волн реализованы на ЭВМ в виде прикладной программы. Результаты исследований могут быть использованы в сейсмологии, геофизике, дефектоскопии, методах идентификации материалов.
1. УРАВНЕНИЯ ВОЛНОВЫХ ПОЛЕЙ В УПРУГИХ ТЕЛАХ
1.1 Распространение упругих волн в однородных изотропных средах
Рассмотрим отдельно случай однородной упругой изотропной среды. В этом случае для цилиндрической системы координат мы получаем следующий закон Гука:
а уравнения движения Ламе:
где
Отметим, что уравнения (1.2) записаны в векторной форме и, следовательно, справедливы в любой системе координат,
В однородной изотропной среде существует два типа волн; один из типов волн носит название волн сжатия-разрежения (или продольные волны), другой – волн сдвига (или поперечные волны). Относительно этих волн можно сказать, что они характеризуются различными скоростями распространения фронта, а также тем, что в волнах сжатия – разрежения отсутствует вращение частиц, а сдвиговые волны не сопровождаются изменением объема. Далее, если в некоторый момент волновое поле имеет продольный характер, то оно остается продольным всегда, то есть продольные волны в изотропной однородной безграничной среде при своем распространении не генерируют поперечных. В свою очередь поперечные волны, распространяясь в безграничной среде, не генерируют продольных волн. В однородной среде с границей продольные и поперечные волны распространяются независимо лишь то того момента, пока фронт не пересечет границу. Тогда образуются так называемые отраженные волны обоих типов, так как обычно системе граничных условий нельзя удовлетворить, введя отраженную волну какого-либо одного типа. Характер волны не меняется только в случае перпендикулярного падения волны на поверхность раздела и в случае падения под произвольным углом поперечной волны с параллельными плоскости раздела колебаниями. Проведем в общем случае разделение произвольной упругой волны в неограниченном однородном изотропном пространстве на две независимо распространяющиеся с разными скоростями продольную и поперечную части. Уравнение движения упругой изотропной среды без учета массовых сил имеет вид:
Перепишем его, введя в него скорости
Представим вектор
Применим к обеим сторонам этого уравнения операцию div. Поскольку
или
С другой стороны, так как
Аналогично применяя к уравнению (1.5) операцию rot и помня, что
Поскольку div стоящего в скобках выражения также равна нулю, то мы приходим к уравнению, подобному (1.6):
Уравнения (1.6), (1.7) представляют собой обычные волновые уравнения (в трех измерениях). Каждое из них соответствует распространению упругой волны со скоростью соответственно В упругой монохроматической волне вектор смещения имеет вид:
где
получающемуся при подстановке (1.8) в (1.4). Продольная и поперечная части монохроматической волны удовлетворяют уравнениям Гельмгольца:
где Пусть Покажем, что функции
Видно, что уравнение будет удовлетворяться, если положить:
Если мы будем рассматривать зависимость от времени t у функций
Произвольную плоскую волну можно разложить в спектр, то есть можно ее представить в виде суперпозиции плоских же гармонических волн. Поэтому имеет смысл изучать распространение гармонических волн. Зависимость от координат x,y в декартовой системе координат и времени t мы будем брать в виде экспоненты. Этот же результат можно получить, если применить к уравнениям Гельмгольца для потенциалов, записанным в декартовой системе координат, метод разделения переменных.
1.2 Граничные условия
Рассмотрим граничные условия на границе раздела сред при распространении упругой волны. Они заключаются в непрерывности компонент вектора смещения В изотропной среде компоненты тензора напряжений
где
2. РАССЕЯНИЕ ПЛОСКОЙ ПРОДОЛЬНОЙ УПРУГОЙ ВОЛНЫ ОДНОРОДНЫМ ИЗОТРОПНЫМ ЦИЛИНДРИЧЕСКИМ СЛОЕМ
2.1 Постановка задачи
Рассмотрим бесконечный изотропный полый круговой цилиндр с внешним радиусом Пусть из полупространства
Определим отраженную от слоя и прошедшую через слой волны, а также найдем поле смещений внутри упругого слоя.
Фронт падающей волны перпендикулярен образующим цилиндра и поэтому задача является плоской, то есть смещения не зависят от координаты z. Учтем, что в формуле Мы осстановимся на рассмотрении рассеяния плоской продольной волны, представленной вектором падения:
2.2 Рассеяние продольной волны
Пусть из внешнего пространства на упругий цилиндр перпендикулярно падает плоская упругая продольная волна, потенциал смещений которой равен:
где
где Определим отраженную от цилиндра и возбужденную в полости волны, а также найдем потенциалы смещений внутри слоя. Вектор смещения в однородных изотропных средах также будет иметь всего две отличные от нуля компоненты:
Отраженная, возбужденная упругие волны, а также волны внутри однородного слоя являются решениями уравнений Гельмгольца. Причем их потенциалы также удовлетворяют уравнениям Гельмгольца и не зависят от координаты z. Следует иметь в виду, что вектор-функция Отраженная волна должна удовлетворять условиям излучения на бесконечности:
а прошедшая волна – условию ограниченности. Поэтому потенциалы смещений этих волн будем искать в виде: - для отраженной волны:
- для возбужденной волны:
- для волны внутри слоя:
где
Заметим, что представления (2.3) - (2.5) можно получить, применив метод разделения переменных к уравнениям Гельмгольца для потенциалов в цилиндрической системе координат от двух переменных. Мы получим функции вида:
Для того, чтобы потенциал отраженной волны удовлетворял условию излучения на бесконечности, необходимо в качестве цилиндрической функции Бесселя
Коэффициенты подлежат определению из граничных условий, которые заключаются в непрерывности смещений и напряжений на обеих поверхностях упругого слоя. Имеем:
при при
где Компоненты вектора смещения
Подставим (2.7) в (1.10), получим:
С учетом того, что дифференцирование по
Подставим полученные выражения в граничные условия (2.6). В результате получим систему линейных алгебраических уравнений для коэффициентов
Разрешая для каждого n полученную систему одним из численных методов и подставляя полученные коэффициенты в потенциалы, найдем волновое поле, в том числе и в бесконечности. Проведя вычисления для достаточно большого числа n, получаем возможность анализировать волновые поля вне и внутри оболочки по разложениям (2.2), (2.4), (2.5). В частности можно оценить поведение рассеянного поля в дальней зоне. Пользуясь асимптотическим представлением функций Ханкеля при больших значениях аргумента, для потенциала рассеянной продольной волны при
или
Опуская первый множитель, характеризующий распространение ненаправленной цилиндрической волны, и учитывая, что амплитуда падающей волны – единичная, получим выражение для нормированной амплитуды рассеянной волны:
Это выражение определяет диаграмму направленности рассеянного поля по амплитуде.
3. ЧИСЛЕННЫЕ ИССЛЕДОВАНИЯ И АНАЛИЗ РЕЗУЛЬТАТОВ
3.1 Расчетные данные
Расчет будем проводить с материалами, модули упругости и плотность которых представлены в следующей таблице:
Таблица 1. Модули упругости и плотность материалов.
Мы будем рассматривать алюминиевый цилиндрический слой, помещенный в упругое однородное изотропное пространство (сталь). Необходимые данные будут взяты из таблицы 1. Расчеты будем проводить при значениях радиусов:
3.2 Численная реализация Алгоритм численного расчета реализован в виде программы kurs_ira.cpp на IBM – совместимых компьютерах на языке C++ в среде Borland версии 3.1. В качестве метода решения системы линейных алгебраических уравнений применялся метод Гаусса с выбором главного элемента. Листинг программы представлен в ПРИЛОЖЕНИИ 1. В качестве начальных данных в программе задаются плотности и модули упругости для различных сред, значения радиусов, номер задачи. В качестве результатов были получены диаграммы направленности рассеянного поля по амплитуде, представленные в ПРИЛОЖЕНИИ 2. ЗАКЛЮЧЕНИЕ
В результате проделанной работы проделано следующее:
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|