Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Приведены волновые уравнения в изотропных однородных средах.




2. Для однородной изотропной среды теоретически было показано разделение волны на продольную и поперечную части и приведены формулы для граничных условий.

3. Поставлена и решена задача о прохождении плоской упругой продольной волны через упругий однородный изотропный цилиндрический слой и приведены диаграммы направленности рассеяния продольной волны по амплитуде. Листинг программы представлен в ПРИЛОЖЕНИИ 1. Расчетные данные взяты из таблицы 1.

4. В качестве численного метода решения системы линейных алгебраических уравнений использован метод Гаусса с выбором главного элемента.

5. В качестве результатов были получены графики диаграмм рассеянного поля продольной волны по амплитуде в ПРИЛОЖЕНИИ 2.

Эти результаты могут широко использоваться как в самой теории упругости, так и в ее приложениях в области дефектоскопии, геофизики, методах идентификации материалов.

 


ЛИТЕРАТУРА

 

1. Амензаде Ю.А. Теория упругости.- М.: Высшая школа, 1976, 272с.

2. Бреховских Л.М. Волны в слоистых средах.-М.: Изд-во АН СССР, 1957, 520c.

3. Гузь А.Н., Головчан В.Т. Дифракция упругих волн в многосвязных телах. – Киев, Наукова думка, 1972, 256с.

4. Исраилов М.Ш. Динамическая теория упругости и дифракции волн - М.: Изд-во МГУ, 1922, 205c.

5. Ландау Л.Д., Лившиц Е.М. Теория упругости.- М.: Наука, 1987, 248c.

6. Лехницкий С.Г. Теория упругости анизотропного тела.– М.:Наука,1977, 415с.

7. Мусхелишвили Н.И. Некоторые основные задачи математической теории упругости. - М.: Наука, 1966, 707с.

8. Новацкий В. Теория упругости. – М.: Мир, 1975. 872с.

9. Поручиков В.Б. Методы динамической теории упругости. – М.: Наука, 1986, 328c.

10. Рамская Е.И. Анализ собственных частот и форм осесимметричных колебаний трансверсально-изотропной полой сферы. // Прикладная механика, 1983, т. 19, N 7, c.103-107.

11. Скобельцын С.А., Толоконников Л.А. Прохождение звуковых волн через трансверсально–изотропный неоднородный плоский слой. // Акуст. журн., 1990, т.36, N4, с. 740-744.

12. Толоконников Л.А. Прохождение звука через неоднородный анизотропный слой, граничащий с вязкими жидкостями. // Прикладная математика и механика, 1998, т. 62, N 6, с. 1029-1035.

13. Шендеров Е.Л. Импедансы колебаний трансверсально-изотропного сферического слоя.// Акуст. журн., 1985, т. 31, N 5, с. 644-649.

14. Шендеров Е.Л. Шоренко И.Н. Импедансы колебаний изотропной и трансверсально-изотропной сферических оболочек, вычисленные по различным теориям.// Акуст. журн., 1986, т. 32, N 1, с. 101-106.

15. Шульга Н.А. Распространение осесимметричных упругих волн в ортотропном полом цилиндре.// Прикладная механика,1974,т.10,N9,c.14-18.

16. Шульга Н.А. Собственные колебания трансверсально-изотропной полой сферы.// Прикладная механика, 1980, т.16, N 12, c.108-110.

 


ПРИЛОЖЕНИЕ 1. ЛИСТИНГ ПРОГРАММЫ

 

#include<stdio.h>

#include<conio.h>

#include<complex.h>

#include<stdlib.h>

#include<graphics.h>

#define K 7

#define M 50

#define N 16

#define MM 8

complex iii=complex(0.0,1.0);

double w;

complex const_w;

double r1,r2,h=0.5,L1,L2,L3,M1,M2,M3,R1,R2,R3;

int zad;

double eps=0.000001;

double C=0.577215664901532;

double module(complex x)

{ return(sqrt(real(x)*real(x)+imag(x)*imag(x))); }

double fact(double n)

{

double i,k;

k=1.0;

for(i=1.0;i<(n+1.0);i++)

k=k*i;

return(k);

}

complex J(double x,double n)

{

double sum,s;

double k;

if(n<0.0) return(pow(-1.0,-n)*J(x,-n));

else

{

if(n>1.0) return(2.0*(n-1.0)/x*J(x,n-1.0)-J(x,n-2.0));

if(n==0.0)

{

    n=0.0;

    k=-1.0;

    sum=0.0;

    s=0.0;

    do{

     k=k+1.0;

     sum=sum+s;

     s=pow(-1.0,k)/fact(k)/fact(n+k)*pow(x/2.0,2*k+n);

     }while(module(s)>=eps);

    return(sum);

}

if(n==1.0)

{

    n=1.0;

    k=-1.0;

    sum=0.0;

    s=0.0;

    do{

     k=k+1.0;

     sum=sum+s;

     s=pow(-1.0,k)/fact(k)/fact(n+k)*pow(x/2.0,2*k+n);

     }while(module(s)>=eps);

    return(sum);

}

}

}

complex J_der(double x,double n)

{ return((J(x,n-1.0)-J(x,n+1.0))/2.0); }

complex J_der_der(double x,double n)

{ return((J_der(x,n-1.0)-J_der(x,n+1.0))/2.0); }

complex Ne(double x,double n)

{

complex sum1,sum2,sum3,s,ss,sss;

double k,nn,i;

if(n<0.0) return(pow(-1.0,-n)*Ne(x,-n));

else

{

if(n>1.0) return(2.0*(n-1.0)/x*Ne(x,n-1.0)-Ne(x,n-2.0));

if(n==0.0)

{

    n=0.0;

    sum1=2.0/M_PI*(C+log(x/2.0))*J(x,n);

    sum2=0.0;

    for(k=0.0;k<n;k=k+1.0)

     sum2=sum2+fact(n-k-1.0)/fact(k)*pow(x/2.0,2.0*k-n);

    sum2=-sum2/M_PI;

    k=-1.0;

    sum3=0.0;

    s=0.0;

    do{

     k=k+1.0;

     sum3=sum3+s;

     s=pow(-1.0,k)/fact(k)/fact(n+k)*pow(x/2.0,2*k+n);

     ss=0.0;

     for(i=0.0;i<(k+1.0);i=i+1.0)

     {

     sss=0.0;

     for(nn=1.0;nn<(n+i+1.0);nn=nn+1.0)

              sss=sss+1.0/nn;

     ss=ss+sss;

     }

     s=s*ss;

     }while(module(s)>=eps);

    sum3=-sum3/M_PI;

    return(sum1+sum2+sum3);

}

if(n==1.0)

{

    n=1.0;

    sum1=2.0/M_PI*(C+log(x/2.0))*J(x,n);

    sum2=0.0;

    for(k=0.0;k<n;k=k+1.0)

     sum2=sum2+fact(n-k-1.0)/fact(k)*pow(x/2.0,2.0*k-n);

    sum2=-sum2/M_PI;

    k=-1.0;

    sum3=0.0;

    s=0.0;

    do{

     k=k+1.0;

     sum3=sum3+s;

     s=pow(-1.0,k)/fact(k)/fact(n+k)*pow(x/2.0,2*k+n);

     ss=0.0;

     for(i=0.0;i<(k+1.0);i=i+1.0)

     {

     sss=0.0;

     for(nn=1.0;nn<(n+i+1.0);nn=nn+1.0)

              sss=sss+1.0/nn;

     ss=ss+sss;

     }

     s=s*ss;

     }while(module(s)>=eps);

    sum3=-sum3/M_PI;

    return(sum1+sum2+sum3);

}

}

}

complex Ne_der(double x,double n)

{ return((Ne(x,n-1.0)-Ne(x,n+1.0))/2.0); }

complex Ne_der_der(double x,double n)

{ return((Ne_der(x,n-1.0)-Ne_der(x,n+1.0))/2.0); }

complex H1(double x,double n)

{ return(J(x,n)+iii*Ne(x,n)); }

complex H1_der(double x,double n)

{ return(J_der(x,n)+iii*Ne_der(x,n)); }

complex H1_der_der(double x,double n)

{ return(J_der_der(x,n)+iii*Ne_der_der(x,n)); }

void mod_upr(void)

{

if(zad==1)

{

L1=11.2*pow(10.0,11.0);

M1=8.1*pow(10.0,11.0);

R1=7.7;

L3=5.3*pow(10.0,11.0);

M3=2.6*pow(10.0,11.0);

R3=2.7;

L2=11.2*pow(10.0,11.0);

M2=8.1*pow(10.0,11.0);

R2=7.7;

}

if(zad==2)

{

L1=5.3*pow(10.0,11.0);

M1=2.6*pow(10.0,11.0);

R1=2.7;

L3=11.2*pow(10.0,11.0);

M3=8.1*pow(10.0,11.0);

R3=7.7;

L2=5.3*pow(10.0,11.0);

M2=2.6*pow(10.0,11.0);

R2=2.7;

}

}

double k1,xi1,k2,xi2,k3,xi3;

complex A1_n[K+K+2],A2_n[K+K+2],A3_n[K+K+2],A4_n[K+K+2];

complex B1_n[K+K+2],B2_n[K+K+2],B3_n[K+K+2],B4_n[K+K+2];

complex A[MM][MM];

complex F[MM];

complex X[MM];

float a[N][N];

float f[N];

float x[N];

void Matrix_A_F(float n)

{

A[0][0]=k1*H1_der(k1*r1,n);

A[0][1]=iii*n/r1*H1(xi1*r1,n);

A[0][2]=0.0;

A[0][3]=0.0;

A[0][4]=-k3*J_der(k3*r1,n);

A[0][5]=-k3*Ne_der(k3*r1,n);

A[0][6]=-iii*n/r1*J(xi3*r1,n);

A[0][7]=-iii*n/r1*Ne(xi3*r1,n);

F[0]=-pow(iii,n)*k1*J_der(k1*r1,n);

A[1][0]=0.0;

A[1][1]=0.0;

A[1][2]=k2*J_der(k2*r2,n);

A[1][3]=iii*n/r2*J(xi2*r2,n);

A[1][4]=-k3*J_der(k3*r2,n);

A[1][5]=-k3*Ne_der(k3*r2,n);

A[1][6]=-iii*n/r2*J(xi3*r2,n);

A[1][7]=-iii*n/r2*Ne(xi3*r2,n);

F[1]=0.0;

A[2][0]=iii*n/r1*H1(k1*r1,n);

A[2][1]=-xi1*H1_der(xi1*r1,n);

A[2][2]=0.0;

A[2][3]=0.0;

A[2][4]=-iii*n/r1*J(k3*r1,n);

A[2][5]=-iii*n/r1*Ne(k3*r1,n);

A[2][6]=xi1*J_der(xi3*r1,n);

A[2][7]=xi3*Ne_der(xi3*r1,n);

F[2]=-pow(iii,n+1.0)*n/r1*J(k1*r1,n);

A[3][0]=0.0;

A[3][1]=0.0;

A[3][2]=iii*n/r2*J(k2*r2,n);

A[3][3]=-xi2*J_der(xi2*r2,n);

A[3][4]=-iii*n/r2*J(k3*r2,n);

A[3][5]=-iii*n/r2*Ne(k3*r2,n);

A[3][6]=xi3*J_der(xi3*r2,n);

A[3][7]=xi3*Ne_der(xi3*r2,n);

F[3]=0.0;

A[4][0]=2.0*M1*k1*k1*H1_der_der(k1*r1,n)-L1*k1*k1*H1(k1*r1,n);

A[4][1]=2.0*M1*iii*n/r1*(xi1*H1_der(xi1*r1,n)-H1(xi1*r1,n)/r1);

A[4][2]=0.0;

A[4][3]=0.0;

A[4][4]=-2.0*M3*k3*k3*J_der_der(k3*r1,n)-L3*k3*k3*J(k3*r1,n);

A[4][5]=-2.0*M3*k3*k3*Ne_der_der(k3*r1,n)-L3*k3*k3*Ne(k3*r1,n);

A[4][6]=-2.0*M3*iii*n/r1*(xi3*J_der(xi3*r1,n)-J(xi3*r1,n)/r1);

A[4][7]=-2.0*M3*iii*n/r1*(xi3*Ne_der(xi3*r1,n)-Ne(xi3*r1,n)/r1);

F[4]=-pow(iii,n)*(2.0*M1*k1*k1*J_der_der(k1*r1,n)-L1*k1*k1*J(k1*r1,n));

A[5][0]=2.0*M1*iii*n/r1*(k1*H1_der(k1*r1,n)-H1(k1*r1,n)/r1);

A[5][1]=M1*(-xi1*xi1*H1_der_der(xi1*r1,n)-n*n/r1/r1*H1(xi1*r1,n)+xi1/r1*H1_der(xi1*r1,n));

A[5][2]=0.0;

A[5][3]=0.0;

A[5][4]=-2.0*M3*iii*n/r1*(k3*J_der(k3*r1,n)-J(k3*r1,n)/r1);

A[5][5]=-2.0*M3*iii*n/r1*(k3*Ne_der(k3*r1,n)-Ne(k3*r1,n)/r1);

A[5][6]=-M3*(-xi3*xi3*J_der_der(xi3*r1,n)-n*n/r1/r1*J(xi3*r1,n)+xi3/r1*J_der(xi3*r1,n));

A[5][7]=-M3*(-xi3*xi3*Ne_der_der(xi3*r1,n)-n*n/r1/r1*Ne(xi3*r1,n)+xi3/r1*Ne_der(xi3*r1,n));

F[5]=-2.0*M1/r1*pow(iii,n+1.0)*n*(k1*J_der(k1*r1,n)-J(k1*r1,n)/r1);

A[6][0]=0.0;

A[6][1]=0.0;

A[6][2]=2.0*M2*k2*k2*J_der_der(k2*r2,n)-L2*k2*k2*H1(k2*r2,n);

A[6][3]=2.0*M2*iii*n/r2*(xi2*H1_der(xi2*r2,n)-H1(xi2*r2,n)/r2);

A[6][4]=-2.0*M3*k3*k3*J_der_der(k3*r2,n)-L3*k3*k3*J(k3*r2,n);

A[6][5]=-2.0*M3*k3*k3*Ne_der_der(k3*r2,n)-L3*k3*k3*Ne(k3*r2,n);

A[6][6]=-2.0*M3*iii*n/r2*(xi3*J_der(xi3*r2,n)-J(xi3*r2,n)/r2);

A[6][7]=-2.0*M3*iii*n/r2*(xi3*Ne_der(xi3*r2,n)-Ne(xi3*r2,n)/r2);

F[6]=0.0;

A[7][0]=0.0;

A[7][1]=0.0;

A[7][2]=2.0*M2*iii*n/r2*(k2*H1_der(k2*r2,n)-H1(k2*r2,n)/r2);

A[7][3]=M2*(-xi2*xi2*H1_der_der(xi2*r2,n)-n*n/r2/r2*H1(xi2*r2,n)+xi2/r2*H1_der(xi2*r2,n));

A[7][4]=-2.0*M3*iii*n/r2*(k3*J_der(k3*r2,n)-J(k3*r2,n)/r2);

A[7][5]=-2.0*M3*iii*n/r2*(k3*Ne_der(k3*r2,n)-Ne(k3*r2,n)/r2);

A[7][6]=-M3*(-xi3*xi3*J_der_der(xi3*r2,n)-n*n/r2/r2*J(xi3*r2,n)+xi3/r2*J_der(xi3*r2,n));

A[7][7]=-M3*(-xi3*xi3*Ne_der_der(xi3*r2,n)-n*n/r2/r2*Ne(xi3*r2,n)+xi3/r2*Ne_der(xi3*r2,n));

F[7]=0.0;

}

void Real_Gauss(void)

{

int i,j,k,l,maxk;

float max,w[N],v[N][N],sum,e,c;

for(i=0;i<N;i++)

{

for(j=0;j<N;j++)

    v[i][j]=a[i][j];

w[i]=f[i];

}

for(k=0;k<N;k++)

{

maxk=k;

max=fabs(a[k][k]);

for(i=k;i<N;i++)

    if(fabs(a[i][k])>max)

     {

     maxk=i;

     max=fabs(a[i][k]);

     }

for(i=0;i<N;i++)

    {

     e=a[k][i];

     a[k][i]=a[maxk][i];

     a[maxk][i]=e;

    }

e=f[k];

f[k]=f[maxk];

f[maxk]=e;

for(i=k+1;i<N;i++)

    {

     c=a[i][k]/a[k][k];

     f[i]=f[i]-f[k]*c;

     for(j=k;j<N;j++)

     a[i][j]=a[i][j]-a[k][j]*c;

    }

}

for(i=0;i<N;i++)

x[i]=0.0;

for(i=N-1;i>=0;i--)

{

c=0.0;

for(j=i+1;j<N;j++)

    c=c+a[i][j]*x[j];

x[i]=(f[i]-c)/a[i][i];

}

}

void Complex_Gauss(void)

{

int i,j;

complex sum;

for(i=0;i<MM;i++)

{

a[2*i][0]=real(A[i][0]); a[2*i][1]=-imag(A[i][0]);

a[2*i][2]=real(A[i][1]); a[2*i][3]=-imag(A[i][1]);

a[2*i][4]=real(A[i][2]); a[2*i][5]=-imag(A[i][2]);

a[2*i][6]=real(A[i][3]); a[2*i][7]=-imag(A[i][3]);

a[2*i][8]=real(A[i][4]); a[2*i][9]=-imag(A[i][4]);

a[2*i][10]=real(A[i][5]); a[2*i][11]=-imag(A[i][5]);

a[2*i][12]=real(A[i][6]); a[2*i][13]=-imag(A[i][6]);

a[2*i][14]=real(A[i][7]); a[2*i][15]=-imag(A[i][7]);

    f[2*i]=real(F[i]);

a[2*i+1][0]=imag(A[i][0]); a[2*i+1][1]=real(A[i][0]);

a[2*i+1][2]=imag(A[i][1]); a[2*i+1][3]=real(A[i][1]);

a[2*i+1][4]=imag(A[i][2]); a[2*i+1][5]=real(A[i][2]);

a[2*i+1][6]=imag(A[i][3]); a[2*i+1][7]=real(A[i][3]);

a[2*i+1][8]=imag(A[i][4]); a[2*i+1][9]=real(A[i][4]);

a[2*i+1][10]=imag(A[i][5]); a[2*i+1][11]=real(A[i][5]);

a[2*i+1][12]=imag(A[i][6]); a[2*i+1][13]=real(A[i][6]);

a[2*i+1][14]=imag(A[i][7]); a[2*i+1][15]=real(A[i][7]);

    f[2*i+1]=imag(F[i]);

}

Real_Gauss();

X[0]=complex(x[0],x[1]);

X[1]=complex(x[2],x[3]);

X[2]=complex(x[4],x[5]);

X[3]=complex(x[6],x[7]);

X[4]=complex(x[8],x[9]);

X[5]=complex(x[10],x[11]);

X[6]=complex(x[12],x[13]);

X[7]=complex(x[14],x[15]);

}

void grafic(double *k_1, double *k_2, double *k_3, double *k_4, double a, double b, double c, double d, double col_x, double col_y)

{

double h,hx,hy,dx,dy;

int i,maxx,maxy;

int borderx_left=0,borderx_right=0;

int bordery_up=0,bordery_down=0;

int gdriver=DETECT, gmode, errorcode;

clrscr();

initgraph(&gdriver,&gmode," ");

errorcode=graphresult();

if(errorcode!=grOk)

{

printf("Не могу открыть графический экран!\n");

printf("Нажмите любую клавишу!\n");

getch();

exit(1);

}

setfillstyle(SOLID_FILL,WHITE);

floodfill(0,0,WHITE);

maxx=getmaxx();

maxy=getmaxy();

h=(double)(maxx-(borderx_left+borderx_right));

hx=(b-a)/h;

h=(double)(maxy-(bordery_up+bordery_down));

hy=(d-c)/h;

setcolor(BLACK);

line(borderx_left,bordery_up,borderx_left,maxy-bordery_down);

line(borderx_left,maxy-bordery_down,maxx-borderx_right,maxy-bordery_down);

line(maxx-borderx_right,maxy-bordery_down,maxx-borderx_right,bordery_up);

line(maxx-borderx_right,bordery_up,borderx_left,bordery_up);

line(0,0,0,maxy);

line(0,maxy,maxx,maxy);

line(maxx,maxy,maxx,0);

line(maxx,0,0,0);

dx=(b-a)/col_x;

dy=(d-c)/col_y;

setcolor(BLACK);

for(i=1;i<col_x;i++)

line(borderx_left+i*dx/hx,bordery_up,borderx_left+i*dx/hx,maxy-bordery_down);

for(i=1;i<col_y;i++)

line(borderx_left,bordery_up+i*dy/hy,maxx-borderx_right,bordery_up+i*dy/hy);

setcolor(BLACK);

for(i=0;i<M;i++)

line(borderx_left+(k_1[i]-a)/hx, maxy-bordery_down-(k_2[i]-c)/hy,

     borderx_left+(k_1[i+1]-a)/hx, maxy-bordery_down-(k_2[i+1]-c)/hy);

setcolor(BLACK);

for(i=0;i<M;i++)

line(borderx_left+(k_3[i]-a)/hx, maxy-bordery_down-(k_4[i]-c)/hy,

     borderx_left+(k_3[i+1]-a)/hx, maxy-bordery_down-(k_4[i+1]-c)/hy);

getch();

closegraph();

}

double F_rass(double fi)

{

complex sum;

int i;

sum=0.0;

for(i=-K;i<=K;i=i+1.0)

sum=sum+pow(iii,i)*A1_n[K-i]*exp(iii*i*fi);

sum=2.0/sqrt(M_PI*const_w)*module(sum);

return(module(sum));

}

void main(void)

{

int j;

double k,n;

double k_0,k_n,dk;

double k_1[M+1],k_2[M+1],k_3[M+1],k_4[M+1];

clrscr();

const_w=2.0;

r1=3.5;

r2=1.0;

for(j=0;j<(M+1);j++)

{

k_1[j]=0.0;

k_2[j]=0.0;

k_3[j]=0.0;

k_4[j]=0.0;

}

clrscr();

k_0=M_PI;

k_n=2.0*M_PI;

dk=(k_n-k_0)/M;

j=0;

zad=1;

mod_upr();

w=module(const_w*sqrt((L1+2.0*M1)/R1)/(r1-r2));

k1=w/sqrt((L1+2.0*M1)/R1);

k2=w/sqrt((L2+2.0*M2)/R2);

k3=w/sqrt((L3+2.0*M3)/R3);

xi1=w/sqrt(M1/R1);

xi2=w/sqrt(M2/R2);

xi3=w/sqrt(M3/R3);

for(n=-K;n<=K;n=n+1)

{

Matrix_A_F(n);

Complex_Gauss();

A1_n[K-n]=X[0];

B1_n[K-n]=X[1];

A2_n[K-n]=X[2];

B2_n[K-n]=X[3];

A3_n[K-n]=X[4];

A4_n[K-n]=X[5];

B3_n[K-n]=X[6];

B4_n[K-n]=X[7];

}

for(j=0,k=k_0;k<=k_n;k=k+dk,j++)

{

k_1[j]=-F_rass(k)*cos(k);

k_2[j]=-F_rass(k)*sin(k);

k_3[j]=-F_rass(k)*cos(k);

k_4[j]=F_rass(k)*sin(k);

}

grafic(k_1,k_2,k_3,k_4,-2.0,6.0,-2.0,2.0,8.0,4.0);

}

 


ПРИЛОЖЕНИЕ 2

 

ДИАГРАММЫ РАССЕЯННОГО ПОЛЯ ПО АМПЛИТУДЕ

 

Алюминий (kr=2.0, N=7)

 

Алюминий (kr=3.0, N=9)

 

Алюминий (kr=4.0, N=11)

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...