Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Компьютерное математическое моделирование




 

Каким образом происходит построение математической модели?

·         Во-первых, формулируется цель и предмет исследования.

·         Во-вторых, выделяются наиболее важные характеристики, соответствующие данной цели.

·         В-третьих, словесно описываются взаимосвязи между элементами модели.

·         Далее взаимосвязь формализуется.

·         И производится расчет по математической модели и анализ полученного решения.

Используя данный алгоритм можно решить любую оптимизационную задачу, в том числе и многокритериальную, т.е. ту в которой преследуется не одна, а несколько целей, в том числе противоречивых.

Приведем пример. Теория массового обслуживания - проблема образования очередей. Нужно уравновесить два фактора - затраты на содержание обслуживающих устройств и затраты на пребывание в очереди. Построив формальное описание модели производят расчеты, используя аналитические и вычислительные методы. Если модель хороша, то ответы найденные с ее помощью адекватны моделирующей системе, если плоха, то подлежит улучшению и замене. Критерием адекватности служит практика.

Оптимизационные модели, в том числе многокритериальные, имеют общее свойство- известна цель (или несколько целей) для достижения которой часто приходится иметь дело со сложными системами, где речь идет не столько о решении оптимизационных задач, сколько об исследовании и прогнозировании состояний в зависимости от избираемых стратегий управления. И здесь мы сталкиваемся с трудностями реализации прежнего плана. Они состоят в следующем:

−        сложная система содержит много связей между элементами;

−        реальная система подвергается влиянию случайных факторов, учет их аналитическим путем невозможен;

−        возможность сопоставления оригинала с моделью существует лишь в начале и после применения математического аппарата, т.к. промежуточные результаты могут не иметь аналогов в реальной системе.

В связи с перечисленными трудностями, возникающими при изучении сложных систем, практика потребовала более гибкий метод, и он появился - имитационное моделирование «Simujation modeling».

Обычно под имитационной моделью понимается комплекс программ для ЭВМ, описывающий функционирование отдельных блоков систем и правил взаимодействия между ними. Использование случайных величин делает необходимым многократное проведение экспериментов с имитационной системой (на ЭВМ) и последующий статистический анализ полученных результатов. Весьма распространенным примером использования имитационных моделей является решение задачи массового обслуживания методом МОНТЕ-КАРЛО.

Таким образом, работа с имитационной системой представляет собой эксперимент, осуществляемый на ЭВМ. В чем же заключаются преимущества?

−  Большая близость к реальной системе, чем у математических моделей;

−  Блочный принцип дает возможность верифицировать каждый блок до его включения в общую систему;

−  Использование зависимостей более сложного характера, не описываемых простыми математическими соотношениями.

Перечисленные достоинства определяют недостатки

−  построить имитационную модель дольше, труднее и дороже;

−  для работы с имитационной системой необходимо наличие подходящей по классу ЭВМ;

−  взаимодействие пользователя и имитационной модели (интерфейс) должно быть не слишком сложным, удобным и хорошо известным;

−  построение имитационной модели требует более глубокого изучения реального процесса, нежели математическое моделирование.

Встает вопрос: может ли имитационное моделирование заменить методы оптимизации? Нет, но удобно дополняет их. Имитационная модель - это программа, реализующая некоторый алгоритм, для оптимизации управления которым прежде решается оптимизационная задача.

Таким образом, ни ЭВМ, ни математическая модель, ни алгоритм для ее исследования порознь не могут решить достаточно сложную задачу. Но вместе они представляют ту силу, которая позволяет познавать окружающий мир, управлять им в интересах человека.

Модель не эквивалентна программе, а моделирование не сводится к программированию.

Специфические операции математического моделирования, например, идентификация, линеаризация не сводятся в ЭВМ к преобразованию в ней программ. Расширяется и область применения компьютера и компьютерных моделей.

Основные функции компьютера при моделировании систем:

−        исполнение роли вспомогательного средства для решения задач, доступных и для обычных вычислительных средств, алгоритмам, технологиям;

−        исполнение роли средства постановки и решения новых задач, не решаемых традиционными средствами, алгоритмами, технологиями;

−        исполнение роли средства конструирования компьютерных обучающих и моделирующих сред типа: «обучаемый - компьютер - обучающий», «обучающий - компьютер - обучаемый», «обучающий - компьютер - группа обучаемых», «группа обучаемых - компьютер - обучающий», «компьютер - обучаемый - компьютер»;

−        исполнение роли средства моделирования для получения новых знаний;

−        исполнение роли «обучения» новых моделей (самообучение модели).

Компьютерное моделирование - основа представления знаний в ЭВМ (построения различных баз знаний). Компьютерное моделирование для рождения новой информации использует любую информацию, которую можно актуализировать с помощью ЭВМ. Прогресс моделирования связан с разработкой систем компьютерного моделирования, которые поддерживает весь жизненный цикл модели, а прогресс в информационной технологии - с актуализацией опыта моделирования на компьютере, с созданием банков моделей, методов и программных систем, позволяющих собирать новые модели из моделей банка. Автономные подмодели модели обмениваются информацией друг с другом через единую информационную шину - банк моделей, через базу знаний по компьютерному моделированию. Особенность компьютерных систем моделирования - их высокая интеграция и интерактивность. Часто эти компьютерные среды функционируют в режиме реального времени.

Вычислительный эксперимент - разновидность компьютерного моделирования.

Можно говорить сейчас и о специальных пакетах прикладных программ, текстовых, графических и табличных процессоров, визуальных и когнитивных средах (особенно, работающих в режиме реального времени), позволяющих осуществлять компьютерное моделирование.

Компьютерное моделирование и вычислительный эксперимент становятся новым инструментом, методом научного познания, новой технологией из-за возрастающей необходимости перехода от исследования линейных математических моделей систем (для которых достаточно хорошо известны или разработаны методы исследования, теория) к исследованию сложных и нелинейных математических моделей систем (анализ которых гораздо сложнее); грубо, но образно, говоря: «наши знания об окружающем мире - линейны и детерминированы, а процессы в окружающем мире - нелинейны и стохастичны».

 

 


Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...