Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Генетическая транформация прокариот




Клонирование структурных генов эукариот

Достижения современного этапа в изучении структуры и функций генов связаны с разработкой и широким использованием технологий генетической инженерии, в том числе методов клонирования фрагментов ДНК (генов) различных организмов. Для молекулярного клонирования могут быть использованы ферменты, получившие название рестрикционных эндонуклеаз (рестриктаз), которые способны расщеплять («разрезать») специфические нуклеотидные последовательности молекулы ДНК с разрушением фосфодиэфирных связей и образованием линейных фрагментов молекулы. В качестве носителей (векторов) клонируемых генов обычно используют небольшие кольцевые молекулы ДНК вирусов либо бактериальных плазмид.
Примером может служить действие рестриктазы EcoR 1, которая способна «узнавать» участки молекулы ДНК, содержащие шести-нуклеотидные инвертированные последовательности (5'-ГААТТЦ-3' на одной нити и 3'-ЦТТААГ-5' на другой (комплементарной) нити), и вносить разрывы между нуклеотидами Г и А каждой из нитей молекулы (рис. 1.11). Дальнейшее разделение этих нитей приводит к появлению однонитевых («липких») концов образовавшихся фрагментов молекулы, которые, однако, могут легко воссоединяться по комплементарному принципу с помощью фермента лигазы, способного восстановить целостную структуру молекулы.
молекулы ДНК, содержащего нужный исследователю структурный ген, в кольцевую векторную молекулу ДНК (плазмиду), которая предварительно разрезается той же рестриктазой и, следовательно, имеет «липкие» концы, необходимые для последующего воссоединения с клонируемым хромосомным фрагментом. Следует заметить, что в качестве вектора обычно подбирается такая молекула ДНК, которая имеет всего лишь один полинуклеотидный участок, узнаваемый используемой рестриктазой, т.е. один участок разрезания, поэтому в результате ее рестрикции будет образован один линейный фрагмент, имеющий два комплементарных друг другу «липких» конца. Полученную таким способом гибридную молекулу ДНК (плазмидный вектор с включенным в его структуру хромосомным геном) можно затем ввести в бактериальную клетку с помощью трансформации и копировать в процессе размножения бактерий, являющихся хозяевами этой молекулы. Последующее выделение копированной ДНК клонированного гена, вырезанной той же рестриктазой из структуры векторной молекулы, дает возможность проводить детальный молекулярно-генетический анализ этого гена, включая определение его нуклеотидной последовательности (секвенирование гена). К настоящему времени созданы обширные «библиотеки» клонированных генов (клонотеки) различных организмов, которые используются как для исследовательских работ, так и при решении ряда практических задач.

В соответствии с современными представлениями большинство структурных генов прокариот (бактерий) представлено непрерывными участками молекулы ДНК, вся информация которых используется при синтезе кодируемых полипептидных цепочек. Следовательно, генетическая информация прокариотического гена реализуется полностью. У некоторых мелких вирусов была обнаружена необычная структурно-функциональная организация генетического материала в форме перекрывающихся генов (по принципу «ген в гене»), которая позволяет осуществлять еще более экономное использование имеющихся весьма ограниченных информационных возможностей генома. Так, например, некоторые участки ДНК одного из самых мелких бактериофагов φX174 (табл. 1.3) содержат информацию не одного, а одновременно двух различных генов, что позволяет геному столь малых размеров кодировать не менее 9 различных белковых молекул. Считывание информации перекрывающихся генов начинается с разных стартовых точек одной и той же нуклеотиднои последовательности, т.е. имеются различные рамки считывания этой последовательности.В отличие от прокариот для эукариот типичным является прерывистый характер структурно-функциональной организации генов. Информация такого гена о структуре синтезируемого полипептида существует не в виде непрерывной нуклеотиднои последовательности определенного участка молекулы ДНК, а в форме кодирующих фрагментов (экзонов), которые прерываются (разделяются) «инертными» нуклеотидными последовательностями (нитронами), не принимающими прямого участия в кодировании этого полипептида. Следовательно, гены различных эукариотических организмов представляют собой мозаику из нескольких чередующихся в определенном порядке экзонов и интронов. Размеры нитронов в составе таких генов колеблются от 10 до более чем

 

генетическая транформация прокариот

Трансформация — процесс поглощения клеткой организма свободной молекулы ДНК из среды и встраивания её в геном, что приводит к появлению у такой клетки новых для неё наследуемых признаков, характерных для организма-донора ДНК. Иногда под трансформацией понимают любые процессы горизонтального переноса генов, в том числе трансдукцию, конъюгацию и т. д.

Трансформация прокариот

В любой популяции лишь часть бактерий способна к поглощению из среды молекул ДНК. Состояние клеток, при котором это возможно, называют состоянием компетентности. Обычно максимальное число компетентных клеток наблюдается в конце фазы логарифмического роста.

 

В состоянии компетентности бактерии вырабатывают особый низкомолекулярный белок (фактор компетентности), активизирующий синтез аутолизина, эндонуклеазы I и ДНК-связывающего белка. Аутолизин частично разрушает клеточную стенку, что позволяет ДНК пройти через неё, а также снижает устойчивость бактерий к осмотическому шоку. В состоянии компетентности также снижается общая интенсивность метаболизма. Возможно искусственное приведение клеток в состояние компетентности. Для этого применяют среды с высоким содержанием ионов кальция, цезия, рубидия, электропорацию или заменяют клетки реципиента протопластами без клеточных стенок.

Эффективность трансформации определяется количеством колоний, выросших на чашке Петри после добавления к клеткам 1 мкг суперскрученнойплазмидной ДНК и рассева клеток на питательную среду. Современные методы позволяют добиваться эффективности 106—109.

Поглощаемая ДНК должна быть двухнитевой (эффективность трансформации однонитевой ДНК на порядки ниже, однако несколько возрастает в кислой среде), её длина — не менее 450 пар оснований. ОптимальноеpH для прохождения процесса — около 7. Для некоторых бактерий (Neisseriagonorrhoeae, Hemophilus) поглощаемая ДНК должна содержать определённые последовательности.

ДНК необратимо адсорбируются на ДНК-связывающем белке, после чего одна из нитей разрезается эндонуклеазой на фрагменты длиной 2—4 тыс. пар оснований и проникает в клетку, вторая полностью разрушается. В случае, если эти фрагменты имеют высокую степень гомологии с какими-либо участками бактериальной хромосомы, возможна замена этих участков на них. Поэтому эффективность трансформации зависит от эволюционного расстояния между донором и реципиентом. Общее время процесса не превышает нескольких минут. Впоследствии, при делении, в одну дочернюю клетку попадает ДНК, построенная на основе исходной нити ДНК, в другую — на основе нити с включённым чужеродным фрагментом (выщепление).

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...