В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой.
Этот фундаментальный закон природы называется законом сохранения импульса. Он является следствием из второго и третьего законов Ньютона. Рассмотрим какие-либо два взаимодействующих тела, входящих в состав замкнутой системы. Силы взаимодействия между этими телами обозначим через
где
Это равенство означает, что в результате взаимодействия двух тел их суммарный импульс не изменился. Рассматривая теперь всевозможные парные взаимодействия тел, входящих в замкнутую систему, можно сделать вывод, что внутренние силы замкнутой системы не могут изменить ее суммарный импульс, т. е. векторную сумму импульсов всех тел, входящих в эту систему. Проиллюстрируем закон сохранения импульса на примере нецентрального соударения двух шаров разных масс, один из которых до соударения находился в состоянии покоя.
Изображенные на рис. вектора импульсов шаров до и после соударения можно спроектировать на координатные оси OX и OY. Закон сохранения импульса выполняется и для проекций векторов на каждую ось. В частности, из диаграммы импульсов следует, что проекции векторов
Закон сохранения импульса во многих случаях позволяет находить скорости взаимодействующих тел даже тогда, когда значения действующих сил неизвестны. Примером может служить реактивное движение. При стрельбе из орудия возникает отдача – снаряд движется вперед, а орудие – откатывается назад. Снаряд и орудие – два взаимодействующих тела. Скорость, которую приобретает орудие при отдаче, зависит только от скорости снаряда и отношения масс. Если скорости орудия и снаряда обозначить через
На принципе отдачи основано реактивное движение. В ракете при сгорании топлива газы, нагретые до высокой температуры, выбрасываются из сопла с большой скоростью
где V – скорость ракеты после истечения газов. В данном случае предполагается, что начальная скорость ракеты равнялась нулю. Полученная формула для скорости ракеты справедлива лишь при условии, что вся масса сгоревшего топлива выбрасывается из ракеты одновременно. На самом деле истечение происходит постепенно в течение всего времени ускоренного движения ракеты. Каждая последующая порция газа выбрасывается из ракеты, которая уже приобрела некоторую скорость. Для получения точной формулы процесс истечения газа из сопла ракеты нужно рассмотреть более детально. Пусть ракета в момент времени t имеет массу M и движется со скоростью
Величиной
Величина
выражает второй закон Ньютона для тела переменной массы. Если газы выбрасываются из сопла ракеты строго назад (рис. 1.17.3), то в скалярной форме это соотношение принимает вид:
где u – модуль относительной скорости. С помощью математической операции интегрирования из этого соотношения можно получить формулу для конечной скорости υракеты:
где
Значительное снижение стартовой массы ракеты может быть достигнуто при использовании многоступенчатых ракет, когда ступени ракеты отделяются по мере выгорания топлива. Из процесса последующего разгона ракеты исключаются массы контейнеров, в которых находилось топливо, отработавшие двигатели, системы управления и т. д. Именно по пути создания экономичных многоступенчатых ракет развивается современное ракетостроение. 5. Закон всемирного тяготения, сила тяжести, невесомость.
Закон всемирного тяготения: Все тела притягиваются друг к другу с силой прямо пропорциональной произведению масс этих тел и обратно пропорциональной квадрату расстояния между ними. где F — сила всемирного тяготения, m1, m2 – массы тел, R – расстояние между телами. Коэффициент пропорциональности G одинаков для всех тел в природе. Его называют гравитационной постоянной Физический смысл гравитационной постоянной: гравитационная постоянная численно равна модулю силы тяготения, действующей между двумя точечными телами массой по 1 кг каждое, находящимися на расстоянии 1 м друг от друга. опыт Кавендиша G = 6,67· 10-11 Н м2/кг2 . Впервые прямые измерения гравитационной постоянной провел Г. Кавендиш с помощью крутильных весов в 1798г. Для тел, находящихся вблизи поверхности планет (в частности Земли) частным случаем проявления силы тяготения является сила тяжести: Сила тяжести – это сила, с которой Земля притягивает тело, находящееся на её поверхности или вблизи этой поверхности.
Сила тяжести (mg) направлена вертикально строго к центру Земли; в зависимости от расстояния до поверхности земного шара ускорение свободного падения различно. У поверхности Земли в средних широтах значение его составляет около 9,8 м/с2 . по мере удаления от поверхности Земли g уменьшается.
Вес тела и сила тяжести отличаются по своей природе: вес тела является проявлением действия межмолекулярных сил, а сила тяжести имеет гравитационную природу. Если ускорение а = 0, то вес равен силе, с которой тело притягивается к Земле, а именно Если другое состояние, то вес меняется: · если ускорение а не равно 0, то вес Р = mg — ma (вниз) или Р = mg + ma (вверх); · если тело падает свободно или движется с ускорением свободного падения, т.е. а = g (рис.2), то вес тела равен 0 (Р=0). Состояние тела, в котором его вес равен нулю, называетсяневесомостью. В невесомости находятся и космонавты. В невесомости на мгновение оказываетесь и вы, когда подпрыгиваете во время игры в баскетбол или танца. Домашний эксперимент: Пластиковая бутылка с отверстием у дна наполняется водой. Выпускаем из рук с некоторой высоты. Пока бутылка падает, вода из отверстия не вытекает.
Вес тела движущегося с ускорением (в лифте)
Тело в лифте испытывает перегрузки
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|