Опыты Резерфорда по рассеиванию альфа - частиц, ядерная модель атома, квантовые постулаты Бора, лазеры, испускание и поглощение света атомами, спектры.
Известно, что слово «атом» в переводе с греческого означает «неделимый». Английский физик Дж. Томсон разработал (в к. ХIХ в.) первую «модель атома», согласно которой атом — положительно заряженная сфера, внутри которой плавали электроны. Модель, предложенная Томсоном, нуждалась в экспериментальной проверке, т. к. явления радиоактивности, фотоэффекта нельзя было объяснить, применив модель атома Томсона. Поэтому в 1911 году Эрнест Резерфорд провел ряд опытов по исследованию состава и строения атомов. В этих опытах узкий пучок a -частиц, испускаемых радиоактивным веществом, направлялся на тонкую золотую фольгу. За ней помещался экран, способный светиться под ударами быстрых частиц. Было обнаружено, что большинство – a -частиц отклоняется от прямолинейного распространения после прохождения фольги, т. е. рассеивается, а некоторые a -частицы отбрасываются на 1800.
·
· Первый постулат ( постулат стационарных состояний): В атоме существуют стационарные квантовые состояния, не изменяющиеся с течением времени без внешнего воздействия на атом. · Лазеры На основе квантовой теории излучения были построены квантовые генераторы радиоволн и квантовые генераторы видимого света – лазеры. Лазеры создают когерентное излучение очень большой мощности. Излучение лазеров очень широко применяется в различных областях науки и техники, например, для связи в космосе, для записи и хранения информации (лазерные диски) и сварки, в медицине. Испускание и поглощение света атомами Согласно постулатам Бора электрон может находиться на нескольких определенных орбитах. Каждой орбите электрона соответствует определенная энергия. При переходе электрона с ближней на дальнюю орбиту атомная система поглощает квант энергии. При переходе с более удаленной орбиты электрона на ближнюю орбиту по отношению к ядру, атомная система излучает квант энергии. Спектры Теория Бора позволила объяснить существование линейчатых спектров.
23. Квантовые свойства света, фотоэффект и его законы, применение фотоэффекта в технике. В 1900 г. немецкий физик Макс Планк высказал гипотезу: свет излучается и поглощается не непрерывно, а отдельными порциями — квантами (или фотонами). Энергия Е каждого фотона определяется формулой Е = hv, где h — коэффициент пропорциональности — постоянная Планка, v — частота света. Опытным путем вычислили h = 6,63·10-34 Дж·с. Гипотеза M.Планка объяснила многие явления, а именно, явление фотоэффекта, открытого в 1887 г. немецким ученым Г. Герцем. Далее фотоэффект изучил экспериментально русский ученый Столетов.
Фотоэффект и его законы схема опыта Столетова
Фотоэффект — это вырывание электронов из вещества под действием света. Теорию фотоэффекта создал немецкий ученый А. Эйнштейн в 1905 г. В основе теории Эйнштейна лежит понятие работы выхода электронов из металла и понятие о квантовом излучении света. По теории Эйнштейна фотоэффект имеет следующее объяснение: поглощая квант света, электрон приобретает энергию. При вылете из металла энергия каждого электрона уменьшается на определенную величину, которую называют работой выхода (Авых). Работа выхода — это минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл. Она зависит от типа металла и состояния его поверхности. Максимальная энергия электронов после вылета (если нет других потерь) имеет вид:
Если h v < Авых, то фотоэффекта не происходит. Предельную частоту v min и предельную длину волны λmax называют красной границей фотоэффекта. Она выражается так: v min =A/h, λmax= λкр = hc /A, где λmax (λкр) – максимальная длина волны, при которой фотоэффект еще наблюдается. Красная граница фотоэффекта для разных веществ различна, т.к. А зависит от рода вещества.
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|