Уроки математики с применением дидактических игр.
Рассмотрим на конкретных примерах организационную и содержательную стороны построения уроков математики, содержащих элементы игры как форму взаимодействия учителя с учащимися, в процессе которой через систему игровых действий реализуются учебно-воспитательные возможности, заложенные в содержании учебного материала. Алгебра, IX класс. Тема: «Определение арифметической и геометрической прогрессий». Цель урока: усвоение учащимися понятий арифметической и геометрической прогрессий. Оборудование: кодоскоп, диапозитивы, содержащие дидактический материал (количество заданий четное, поровну для I и II команд), указка. На доске написано: I команда II команда Ниже ведется запись полученных очков. Правила игры. 1) Класс разбивается на две команды: I команда — ученики первого ряда и половины второго ряда; II команда — ученики третьего ряда и половины второго ряда. 2) Выбираются капитаны команд. 3) Капитаны команд назначают консультантов. Они должны помогать школьникам из другой команды отвечать на вопросы, предложенные учителем в ходе урока. Их работа приносит дополнительные очки своей команде. Плохо проведенная консультация или отказ от проведения консультации наказывается очками в пользу команды противника. 4) После слов «Консультация окончена» школьники занимают свои места. В противном случае команда наказывается штрафными очками. 5) Для участия во всех видах работы ученики вызываются к доске капитанами команд. Ход урока I этап — консультация. Актуализируются знания учащихся по таким вопросам: определение последовательности, возрастающие и убывающие последовательности, способы задания числовых последовательностей, рекуррентный способ задания последовательности, построение графика последовательности, среднее арифметическое и среднее геометрическое двух чисел.
На консультацию отводится 10—12 минут. Консультируют учеников представители других команд. Разрешаются и взаимоконсультации.
Рис. 57 Рис. 58
При необходимости консультирует учитель. За консультации команды получают очки. II этап — учебно-познавательная работа учащихся по самостоятельному приобретению новых знаний. Предлагается разделить страницу тетради на две части и слева написать «Арифметическая прогрессия», а справа — «Геометрическая прогрессия». На доску (слева) проецируется задача, приводящая к арифметической, а справа — к геометрической прогрессии. К ним проецируются вопросы и задания, которые необходимо выполнить. Задача 1. Вертикальные стержни фермы имеют такую длину: наименьший а=5дм, а каждый следующий на 2дм длиннее. Записать длину семи стержней. (рис.57) Задача 2. В благоприятных условиях бактерии размножаются так, что на протяжении одной минуты одна из них делится на две. Записать колонию, рожденную одной бактерией за 7 мин (рис. 58). 1) Записать последовательность в соответствии с условием задачи. 2) Записать эту же последовательность с помощью таблицы. 3) Найти разность d между предыдущим и последующим членами последовательности в первой задаче и частное q от деления последующего члена на предыдущий во второй задаче. 4) Задать эти последовательности рекуррентным способом. 5) Дать определение арифметической (геометрической) прогрессии. 6) Найти среднее арифметическое (геометрическое) чисел 2 и 8. Записать найденное число с данными в порядке возрастания. Образуют ли эти числа арифметическую (геометрическую) прогрессию? 7) Справедлива ли такая зависимость для трех последовательных членов рассматриваемых последовательностей?
8) Доказать, что для членов арифметической прогрессии справедлива закономерность аn+1=(an+an+2)/2, а для членов геометрической прогрессии — закономерность bn+1=√bn*bn+2 Сначала школьники проделывают всю работу на доске и в тетрадях для арифметической прогрессии, а потом — для геометрической или для обеих сразу. Записи ответов учащихся, которые поочередно вызываются к доске от каждой команды:
В процессе игры учащиеся следят за ответами товарищей, записывают все в тетради и готовятся ответить на предложенный вопрос. Учитель предлагает вопрос, а капитаны команд называют для ответов учащихся из других команд. Подводятся итоги первых двух этапов игры. III этап — работа школьников по решению упражнений и самостоятельному составлению задач, приводящих к записи арифметической и геометрической прогрессией. За образец взять задачи № 380, 401*. Решить упражнения: I команда II команда № 433 (а), № 433 (б), 446 (а) 446 (б) IV этап — подведение итогов работы. Выигравшая команда объявляется победительницей, а многие учащиеся получают оценку. Задание на дом.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|