Умозаключения по аналогии
Рассуждения, основанные на исследовании сходства или подобия между явлениями, играют значительную роль и в научном познании, и в повседневных рассуждениях. Как и индукция, аналогия связана с переносом знания с одних предметов и явлений на другие. Результаты умозаключений по аналогии также имеют лишь правдоподобный характер, в силу чего такие рассуждения в современной логике относят к вероятностным заключениям. Степень вероятности их может колебаться в широких пределах, начиная от ложных и кончая приближающимися к достоверности. Но в отличие от индукции при аналогии речь идет о заключении, основанном на сходстве, подобии некоторых свойств исследуемых случаев. Если рассматриваемые случаи аналогичны по существенным признакам, то правдоподобно заключить, что они будут сходны и по другим, связанным с первыми, свойствам. Наиболее типичной формой является аналогия между моделью и ее оригиналом (прототипом), которая широко используется в науке и технике.
Модель, как известно, строится с таким расчетом, чтобы она отражала все наиболее существенные свойства и отношения своего реального прототипа, но в то же время ее исследовать значительно проще, чем оригинал. В ряде случаев непосредственное изучение самого прототипа оказывается невозможным (химические производства; процессы, происходящие в ядерных реакторах; космические аппараты и устройства и т.п.). Именно в этих целях строится материальная или концептуальная модель, зависимости между величинами которой подобны отношениям между величинами, характеризующими реальный объект или систему. Так, на основе теории подобия обычно изготовляются модели гидростанций, самолетов, кораблей и других объектов, которые испытываются на прочность и надежность. Знание, полученное в результате тщательного исследования и проверки модели, переносится затем с соответствующими коррективами на реальный объект.
В последние годы все шире применяется концептуальное и математическое моделирование, идеи которого возникли еще в античной математике, в частности в школе Пифагора. Именно он и его ученики пытались объяснить реальные процессы с помощью отношений и пропорций между числами. Отсюда происходит и само название, аналогии, как пропорции или соразмерности. Математическая модель имеет, конечно, совершенно иную природу, чем реальный объект. Если первая является знаковой, концептуальной структурой, то вторая – вещественной или материальной системой. Но даже в этом случае можно выявить аналогию между количественными отношениями, характеризующими реальный объект, и математической моделью, которая как раз и строится для того, чтобы с помощью соответствующих уравнений точным способом выразить зависимости между свойствами и отношениями реального объекта. Знакомым примером концептуальной модели является модель строения атома по аналогии со строением Солнечной системы. Широко распространена также практика моделирования одних процессов с помощью других, например, механических колебаний посредством электромагнитных. В традиционной логике различают аналогию свойств и отношений. В первом случае предметы сравниваются по их свойствам. Если обнаруживают, что предмет а обладает свойствами А, В и С, а сходный с ним предмет а 1 – свойствами А и В, тогда с определенной степенью вероятности можно предполагать, что предмет а 1 также обладает свойством С, в особенности, когда это свойство связано со свойствами А и В. Поэтому мы и говорим, что в данном случае происходит перенос свойства С, обнаруженного у первого предмета, на второй. Правдоподобность заключения, основанного на аналогии, как и индукция, будет зависеть, во-первых, от количества обнаруженных у сходных предметов общих свойств; во-вторых, от числа других различных свойств; в-третьих, от характера выбираемых свойств: берутся ли они предвзято; или непредвзято; в-четвертых – и это, пожалуй, самое главное – насколько существенны выбираемые свойства, что определяется конкретным характером исследования.
В аналогии отношений, хотя предметы могут быть и несходными, но отношения, которыми связаны элементы, являются подобными (или аналогичными). В рассмотренном выше примере модели строения атома, предложенного Э. Резерфордом, вокруг ядра вращаются электроны, а в Солнечной системе – планеты. Отношения, описывающие взаимодействие между электронами и ядром, с одной стороны, и планетами и Солнцем, с другой, – в чем-то подобны. И хотя планетарная модель оказалась весьма грубой и приближенной, она помогла понять и объяснить целый ряд экспериментальных результатов. Степень правдоподобия умозаключений по аналогии, в которых речь идет об отношениях, можно повысить, если эти отношения точно формулируются на математическом языке, а при переносе их с модели на прототип соблюдаются требования теории подобия. В связи с этим иногда говорят о строгой и нестрогой аналогии, считая, что первая дает достоверное, а вторая – лишь вероятностное знание. Однако здесь следовало бы говорить скорее о сильной и слабой аналогии, поскольку выводы по аналогии в принципе имеют только вероятностный, а не достоверный характер. Хотя степень вероятности умозаключений при наличии определенных условий и соблюдении соответствующих требований можно увеличить, например, с помощью той же теории подобия или обнаружения связи между аналогичными свойствами и отношениями, тем не менее, возможность ошибки даже в этих случаях не исключается. Как и при индукции, целесообразно отличать научную аналогию от популярной (ненаучной), по степени вероятности их заключений. В то время как в научной аналогии производится тщательный отбор переносимых свойств и отношений по степени их существенности, а также внутренней связи переносимого признака (свойства или отношения) с другими признаками, в популярной аналогии чаще всего берутся первые попавшиеся свойства и отношения, и поэтому во многих случаях такая аналогия оказывается ошибочной.
Ложные аналогии, например, уподобление общества живому организму, конфликтов и противоречий – борьбе за существование и т.п., хотя и кажутся на первый взгляд понятными и убедительными, но не раскрывают сущности общественных процессов, их отличия от явлений, происходящих в органическом мире, а тем самым не приближают нас к истине, а уводят от нее. Даже в истории естествознания на основе ошибочных аналогий было построено немало ложных гипотез и концепций. Стоит вспомнить хотя бы гипотезу о флогистоне, теплороде и эфире, первая из которых была предложена для объяснения явлений горения, вторая – тепловых процессов, а третья – оптических явлений. С другой стороны, аналогия о световых волнах, возникшая по аналогии с волнами, появляющимися на воде, оказалась весьма плодотворной и способствовала возникновению волновой теории света. Даже представление о звуковых волнах зародилось из наблюдения за волнами на поверхности жидкости. Все это свидетельствует о том, что аналогия – если она строится научно – служит одним из эффективных средств эвристического поиска, в особенности когда она объединяется с материальным или концептуальным моделированием исследуемых процессов.
В ораторской и художественной речи аналогии в сочетании с метафорами и наглядными, яркими образами очень часто используются для того, чтобы придать речи особую убедительность, наглядность и доступность для восприятия слушателями или читателями. Возникающие при этом ассоциации и эмоции усиливают воздействие рациональных аргументов и тем самым оказывают свое влияние на их сознание и поступки. Но эти достоинства аналогии легко превращаются в недостатки, если не соблюдаются границы ее применения, а тем более когда аналогия оказывается ложной. Так, например, первоначальная аналогия между деятельностью мозга и работой вычислительной машины оказалась очень полезной, так как привела к получению важных результатов. Однако распространение этой аналогии за пределы ее реальных границ может привести к ошибочным выводам и стать тормозом для дальнейших исследований.
В процессе аргументации основанные на аналогии доводы оцениваются как вероятностные по тем же критериям, как и индуктивные. Поэтому уточнение выводов аналогии, оправданность переноса одних свойств и отношений на другие предметы и системы зависит прежде и больше всего от существования внутренней, закономерной связи между свойствами и отношениями сходных или подобных систем. В конечном счете аналогия и моделирование опираются на подобие структур исследуемых предметов и систем. Тождественность или совпадение структур может быть выражено с помощью математического понятия изоморфизма, а сходство и подобие – понятия гомеоморфизма. В первом случае свойства и отношения одной системы могут быть однозначно соотнесены с другой, во-втором – только частично. Так, отношения, исследуемые на модели какого-либо объекта, отображают лишь небольшую часть отношений и свойств самого объекта.
Читайте также: В. ИНДУКТИВНЫЕ УМОЗАКЛЮЧЕНИЯ Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|