Прямые и косвенные доказательства
Прямым называется доказательство, в котором тезис выводится из аргументов по правилам дедуктивных умозаключений. Никаких дополнительных приемов рассуждения при этом не используется. Если аргументы истинны, то тезис из них следует с логической необходимостью и достоверностью. Так в математике доказывается большинство теорем. Косвенным доказательством называют доказательство, в котором сначала доказывается антитезис, а затем уже, убедившись в ложности антитезиса, доказывают истинность тезиса. Таким образом, косвенное доказательство начинается с того, что выдвигается допущение, противоречащее тезису. Затем из этого предположения выводятся следствия, которые оказываются противоречащими ранее известным или доказанным истинам. По отрицающему модусу условного умозаключения отсюда следует ложность антитезиса, который является нашим предположением. Из ложности антитезиса мы выводим заключение об истинности тезиса. Обратите внимание, что доказательства такого рода основываются в конечном счете на законе исключенного третьего, применение которого оспаривается некоторыми математиками в отношении к бесконечным множествам. Такой способ непрямого (или косвенного) доказательства античные логики называли апогогическим, что в переводе с древнегреческого означает отход или отклонение от непосредственного разбора аргументов. Математики называют его доказательством от противного, поскольку при этом приходится доказывать утверждение противоречащее тезису. Очевидно, что косвенные доказательства, в том числе и апогогические, проводить сложнее, так как при этом приходится выводить следствия из антитезиса и сопоставлять их с тезисом. Найти же противоречащее тезису утверждение в ряде случаев оказывается не так просто. К тому же, окольный путь доказательства нередко воспринимается как менее убедительный, чем прямой. По-видимому, именно это обстоятельство имел в виду А. Шопенгауэр, когда сравнивал некоторые математические доказательства с мышеловками. Тем не менее, апогогические доказательства совершенно необходимы тогда, когда приходится доказывать даже теоремы элементарной геометрии.
Достаточно обратиться к любому курсу элементарной геометрии, чтобы убедиться в том, что уже простейшие ее теоремы, например о равенстве треугольников, доказываются с помощью допущения, противоречащего доказываемому. Затем из него выводится следствие, которое оказывается ложным или даже абсурдным. На этом основании по правилу modus tollens делается заключение о ложности допущения, а уже из него по закону исключенного третьего выводится истинность доказываемого тезиса. Общая структура апогогического доказательства (или доказательства от противного) может быть выражена формулой: ((А → В) Ù В)) → А. Разделительно-категорическое доказательство основывается на разделительно-категорической демонстрации аргументов, о которой шла речь выше. Там мы убедились, что если исключаются все гипотезы или предположения, кроме одного-единственного, то тем самым косвенно доказывается истинность этого оставшегося предположения. Но зачастую это не освобождает нас от прямого, непосредственного доказательства, когда речь идет, например, о доказательстве виновности подсудимого. Опровержение В широком смысле слова под опровержением подразумевается процесс рассуждения, с помощью которого обосновывается либо ложность выдвигаемого тезиса, либо отдельных посылок, либо умозаключения в целом. В этом отношении опровержение отличается от доказательства, которое считается несостоятельным, когда по крайней мере одна из его посылок является ложной либо посылки считаются сомнительными, не говоря уже о необходимой логической связи между посылками и тезисом доказательства.
Тезис опровержения может оказаться истинным даже тогда, когда все посылки являются ложными, а связь между посылками не отвечает требованиям правил логики. Иными словами, тезис в этом случае не находится в необходимой логической связи с аргументами, которые приводятся для его обоснования.
Итак, следует различать три основных способа опровержения. 1. Первый способ относится к опровержению аргументов, служащих основой рассуждения. Факты, на которые опирается аргументация, заслуживают особо тщательного обоснования, ибо именно на них опираются все наши обобщения, эмпирические и теоретические законы. Обнаружение новых фактов, полученных в результате тщательных и систематических наблюдений, специально проведенных экспериментов и практической деятельности, приводит к опровержению целого ряда предложений, гипотез, концепций и общепринятых мнений. Обычно аргументы, опирающиеся на законы науки, оказываются наиболее надежными средствами аргументации, но и они с течением времени подвергаются уточнению, обобщению и исправлению. С такой широкой точки зрения прогресс науки всегда сопровождается опровержением целого ряда ранее принятых ее положений, хотя при этом всегда сохраняется преемственность между новым и старым знанием. Однако логика не рассматривает процесс опровержения в таком широком контексте. 2. Второй способ опровержения связан с анализом необходимой логической связи между аргументами и тезисом, которые служат соответственно посылками и заключением дедуктивного вывода. Если такая связь отсутствует, то тем самым опровергается истинность заключения, т.е. демонстрируется, что тезис логически не вытекает из посылок. 3. Третий способ относится к опровержению самого тезиса. В принципе такое опровержение может быть применено к любому утверждению. Для этого в науке используются различные приемы рассуждений, основанные на выведении логических следствий из опровергаемого утверждения. Наиболее часто используется, например, прием, получивший название "приведения к нелепости" (reductio ad absurdum). В отличие от косвенного доказательства от противного, в данном случае опровергаемое утверждение принимается в качестве истинного, и тем самым исключается окольный путь доказательства. Из него выводятся логические следствия, некоторые из них оказываются явно противоречащими хорошо известным истинам, так что они рассматриваются как нелепые или абсурдные. На этом основании доказательство такого рода получило название приема сведения к абсурду. Поскольку следствие оказывается ложным, то по отрицательному модусу условного умозаключения опровергается исходное утверждение (или тезис). Необходимо, однако, подчеркнуть, что рассмотренный прием опровержения нельзя применить к совершенно новым положениям науки, следствия из которых кажутся абсурдными с точки зрения так называемого "здравого смысла" или ходячих мнений и представлений, какими казались первоначально, например, теоремы неевклидовой геометрии, которую сам Лобачевский из осторожности называл воображаемой. Действительно, даже математики того времени не могли допустить, что параллельные линии могут сходиться и пересекаться, а сумма углов треугольника зависит от величины его сторон. В значительной мере подобные возражения связаны с отождествлением абстрактной геометрии с эмпирической, чисто логических рассуждений – с практическими. Не меньшие возражения вызывает теория бесконечных множеств Г. Кантора, в которой бесконечное множество уподобляется конечному, вследствие чего часть множества (или подмножество) оказывается эквивалентной целому множеству. Так, множество натуральных чисел считается эквивалентным (или равномощным) множеству всех рациональных чисел, а множество четных чисел – всему множеству натуральных чисел. С точки зрения "здравого смысла" и традиционных представлений эти результаты кажутся абсурдными. Поэтому необходимо помнить, что доказательства путем приведения к абсурду не имеют ничего общего с радикально новыми открытиями науки. Когда речь идет о приведении к абсурду или нелепости, то имеются в виду противоречия с истинами, законами, аксиомами и принципами, которые являются общепризнанными в определенный период времени и имеющими общенаучный характер.
Читайте также: Виды доказательства Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|