Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Новая лазерная технология позволяет превращать древесину в графен.




Новая лазерная технология позволяет превращать древесину в графен.

Ученые из университета Райс (Rice University) разработали новую лазерную технологию производства графена (laser-induced grapheme, LIG), в которой в качестве исходного сырья используется обычная древесина. В этой технологии используется свет промышленного лазера с определенными параметрами. Процесс проводится в условиях комнатной температуры и внутри камеры со специальной защитной атмосферой. Отсутствие кислорода препятствует горению древесины, а особые параметры процесса приводят к тому, что на поверхности древесины образуется своего рода графеновая " пена".

2017 г.

Броня на основе графена остановит пули, становясь в момент удара твёрже алмаза. Пуленепробиваемые жилеты и другие средства защиты высокого класса являются массивными и тяжелыми. Но если такой бронежилет изготовить из материала на основе графена, изобретенного исследователями Городского университета Нью-Йорка, он будет намного легче, обеспечивая защиту должного уровня. А достигается все это за счет того, что два слоя графена, между которыми проложен тонкий слой другого материала, в момент удара укрепляются и затвердевают, обретая прочность, превышающую прочность алмаза.

Speed Read

Translate at sight

A Chip Off the Old Block[2]

Sometimes the old gives rise to the new in wonderfully unexpected ways. Such was the case with graphene: an entirely new form of carbon, the world's first 2-dimensional material and the subject of the 2010 Nobel Prize in Physics. This novel wonder material, which offers possibilities ranging from faster computers to new insights into quantum physics, was produced from plain, familiar old graphite, the stuff that fills your pencils. Pencils work because graphite is made from layer upon layer of carbon atoms arranged in sheets a single atom thick; every time you move the pencil across the paper, clumps of these sheets shear off (срезать, скалывать) and are left on the paper. Graphene, which consists of just one of these sheets, can, it turned out, also be sheared off a lump of graphite.

Andre Geim and Konstantin Novoselov, this year's Nobel Laureates, actually isolated Graphene in 2004 in one of their 'Friday evening experiments' where they habitually play with new ideas. They ended up using another familiar material, ordinary sticky tape, to 'exfoliate' a graphite crystal and found that, after several rounds, they were able to peel off the elusive graphene monolayers. Virtually transparent and of atomic thickness, graphene can only be seen under very specific conditions, and coincidentally Geim and Novoselov chose exactly the right substrate to place their flakes on, allowing them to view them in an ordinary microscope. A new research field was born.

Graphene's remarkable strength and extreme conductivity, it is a hundred times stronger than steel and more conductive than copper, result from its hexagonal lattice of carbon atoms permeated by a sea of delocalized electrons. Aside from the insights into fundamental quantum physics they offer, graphene's properties have set the world's material scientists dreaming of, and exploring, a wealth of possible applications. Among the most realistic is its potential use in touch screens where the transparency, strength and conductivity it offers appear to provide a highly desirable combination. Perhaps most immediately enticing (заманчивый) is the vision of further miniaturizing computer chips by using graphene's atomic scale to overcome the size constraints now being encountered with silicon-based components.

Previous results of the Geim lab's playful approach to physics have included levitating live frogs, in a demonstration of the importance of diamagnetism, and the biomimetic nanomaterial known as gecko tape. As Geim himself says, " getting some play during working hours for which you are paid is the best job I can recommend for anyone around! "

(by Adam Smith, Editor-in-Chief, Nobelprize. org)

 


 

 

Unit 11

The Accelerating Expansion of the Universe

 

The Nobel Prize in Physics 2011 — Press Release

October 4, 2011

The Royal Swedish academy of Sciences decided to award the Nobel Prize in Physics for 2011 " for the discovery of the accelerating expansion of the Universe through observations of distant supernova". The prize is awarded with one half jointly to Saul Perlmutter The Supernova Cosmology Project Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, USA, and the other half jointly to Brian P. Schmidt the High-z Supernova Search Team Australian National University, Weston Creek, Australia, and Adam G. Riess the High-z Supernova Search Team Johns Hopkins University and Space Telescope Science Institute, Baltimore, MD, USA.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...